способ получения агломерированного цеолита
Классы МПК: | B01J20/18 синтетические цеолитные молекулярные сита |
Автор(ы): | Гладышев Николай Федорович (RU), Гладышева Тамара Викторовна (RU), Ферапонтов Юрий Анатольевич (RU), Ферапонтова Людмила Леонидовна (RU), Булаев Николай Анатольевич (RU), Козадаев Леонид Эдуардович (RU), Путин Борис Викторович (RU), Путин Сергей Борисович (RU) |
Патентообладатель(и): | Открытое акционерное общество "Корпорация "Росхимзащита" (ОАО "Корпорация "Росхимзащита") (RU) |
Приоритеты: |
подача заявки:
2010-06-25 публикация патента:
10.03.2012 |
Изобретение относится к способу получения агломерированного цеолитового сорбента в виде сферических гранул. Способ включает приготовление суспензии порошкообразного цеолита со связующим, диспергирование суспензии в жидкость и отделение гранул от жидкости и их термообработку. При этом в качестве связующего используют полимеры фторпроизводных этилена, в качестве суспендирующего агента используют растворитель, выбранный из ряда кетонов, а в качестве жидкости используют воду. Достигаемый при этом технический результат заключается в увеличении сорбционной емкости и кинетики сорбции полученного агломерированного цеолита, а также в упрощении технологического процесса его получения, в частности в сокращении времени производственного цикла при получении единицы конечной продукции в 1,2 раза. 5 з.п. ф-лы, 1 ил., 3 пр., 1 табл.
Формула изобретения
1. Способ получения агломерированного цеолитового сорбента в виде сферических гранул, включающий приготовление суспензии порошкообразного цеолита со связующим, диспергирование суспензии в жидкость, отделение гранул от жидкости и их термообработку, отличающийся тем, что в качестве связующего используют полимеры фторпроизводных этилена, в качестве суспендирующего агента используют растворитель, выбранный из ряда кетонов, а в качестве жидкости используют воду.
2. Способ получения агломерированного цеолитового сорбента по п.1, отличающийся тем, что суспензию готовят при соотношении цеолит/связующее, равном 70-85/30-15 вес.%.
3. Способ получения агломерированного цеолитового сорбента по п.1, отличающийся тем, что количество растворителя составляет 10-20 мл на 1 г связующего.
4. Способ получения агломерированного цеолитового сорбента по п.1, отличающийся тем, что в качестве растворителя используют ацетон.
5. Способ получения агломерированного цеолитового сорбента по п.1, отличающийся тем, что для приготовления суспензии используют исходный порошкообразный цеолит с дисперсностью от 1 до 6 мкм.
6. Способ получения агломерированного цеолитового сорбента по п.1, отличающийся тем, что диспергирование суспензии осуществляют в воду, нагретую выше 65°C, но ниже 95°C.
Описание изобретения к патенту
Изобретение относится к способам получения агломерированного цеолита.
Использование как природных, так и синтетических цеолитов в адсорбционных процессах требует предварительного формования кристаллов цеолита в агломераты различной формы - гранулы, блоки и т.д.
Существующие методы получения агломерированных кристаллических цеолитов предполагают использование как неорганических, так и органических связующих и имеют своей целью решение конкретной практической задачи - получение сорбента с заданными характеристиками.
При этом получаемый агломерированный цеолит должен удовлетворять следующим основным требованиям: высокая сорбционная емкость, развитая удельная поверхность и структура транспортных пор, высокая кинетика сорбции и десорбции, достаточная вибро- и ударопрочность, устойчивость к воздействию перепада температур и агрессивных сред.
Кроме того, для процессов обратимой адсорбции, связанных с колебаниями давления и/или температуры, существенным является форма гранул цеолита. В этом случае предпочтительной является сферическая форма гранул, поскольку она позволяет обеспечить высокую стабильность механической прочности гранул и максимальную кинетику процессов массопереноса в циклах сорбция-десорбция.
Известен способ получения агломерированного цеолита в виде сферических гранул, включающий приготовление суспензии порошкообразного цеолита и связующего, диспергирование суспензии в форме капель в жидкость, отделение полученных сферических гранул от жидкости и их сушку (патент США № 3795631, МПК B01J 11/40, 1974 г.). По этому способу порошкообразный кристаллический цеолит смешивают с аморфным связующим и стекловолокном с образованием суспензии, в эту суспензию вводят суспензию оксида магния. Полученную в результате смешения суспензию диспергируют в несмешивающуюся с водой органическую жидкость. В качестве органической жидкости использовалась смесь перхлорэтилена и ортодихлорбензола плотностью 1,52 г/см3. В качестве связующего используют золь кремневой кислоты, который в процессе коагуляции капель в жидкости преобразуется в гель, обеспечивая тем самым требуемую механическую прочность агломерированного цеолита при сохранении достаточной сорбционной емкости. Стекловолокно также способствует упрочнению гранул, а также предотвращает усадку гранул в процессе их коагуляции в жидкости. Полученные гранулы отделяют от органической жидкости и термообрабатывают в потоке нагретого сухого воздуха.
Однако такой способ является технологически сложным. Это обусловлено, во-первых, многостадийностью процесса, заключающегося в приготовлении двух исходных суспензий, их последующего смещения и подготовке исходных компонентов для их приготовления, во-вторых, необходимостью тщательной подготовки самих исходных компонентов. При этом существенное значение имеют постоянный контроль плотности и размера поверхности золя кремневой кислоты, состав и качество стекловолокна, pH суспензий, плотность органической жидкости, чистота оксида магния и т.п., поскольку при отклонении каких-либо параметров может быть нарушен процесс коагуляции частиц и, соответственно, гранулы могут иметь неоднородную структуру и отличаться по механической прочности, что в конечном счете негативно скажется на их эксплуатационных характеристиках.
Задачей изобретения является упрощение технологического процесса получения агломерированного цеолита в виде сферических гранул.
Задача решается изобретением, по которому в способе получения агломерированного цеолита в виде сферических гранул, включающем приготовление суспензии порошкообразного цеолита со связующим, диспергирование суспензии в жидкость, отделение гранул от жидкости и их термообработку, в качестве связующего используют полимеры фторпроизводных этилена [-CF2-CF 2-]n (фторопласты), в качестве суспендирующего агента используют растворитель, выбранный из ряда кетонов, а в качестве жидкости используют воду.
Предпочтительно суспензию готовят при соотношении цеолит/связующее, равном 70-85/30-15% весовых, при этом количество растворителя выбирается исходя из требования получения однородной суспензии заданной плотности и вязкости. Обычно количество растворителя составляет 10-20 мл на 1 грамм связующего.
Предпочтительно в качестве растворителя использовать ацетон.
Предпочтительно для приготовления суспензии использовать исходный порошкообразный цеолит с дисперсностью от 1 мкм до 6 мкм.
Предпочтительно осуществлять диспергирование суспензии в воду, нагретую выше 65°C, но ниже 95°C.
В отличие от способа по патенту США № 3795631, способ по изобретению осуществляется в одну стадию, поскольку предусматривает приготовление только одной суспензии, при этом из технологической схемы исключаются операции по приготовлению суспензии связующего и входящих в его состав компонентов, а также исключается необходимость использования соляной кислоты, дополнительных гелеобразующих компонентов и органической жидкости для диспергирования конечной суспензии.
При этом агломерированный цеолит, полученный по изобретению, обладает перед прототипом рядом эксплуатационных преимуществ:
более высокая кинетика сорбции водяного пара;
более высокая сорбционная емкость водяного пара на единицу массы;
гранулы агломерированного цеолита, полученные согласно изобретению, обладают более высокой устойчивостью к термическому воздействию и воздействию десорбируемой в циклах воды, приводящих к разрушению гранул сорбента и образованию пыли, что, в свою очередь, негативно сказывается на его сорбционных характеристиках.
Использование порошка цеолита с дисперсностью от 1 мкм до 6 мкм обеспечивает получение агломерированного сорбента с высокими значениями сорбционной емкости за счет доступности всего объема цеолита для диффундирующего газа, т.к. при использовании в качестве связующего фторопласта не происходит блокировки транспортных и внутренних пор цеолита (молекулы связующего на порядок превосходят размер транспортных пор). Этому же способствует то обстоятельство, что при удалении растворителя предлагаемым в способе технологическим приемом происходит резкое (до 10 раз) увеличение удельной поверхности гранулы сорбента, а связующее после удаления растворителя представляет собой прочную газопроницаемую оболочку с множеством сквозных пор, размерами существенно превышающих размеры адсорбируемых молекул, что создает высокую проницаемость газовому потоку, обеспечивая тем самым высокую кинетику процессов массопереноса в циклах сорбции-десорбции.
Кроме того, полученный по предложенному способу агломерированный цеолитовый сорбент не разрушается и не образует пыли в процессе эксплуатации за счет эластичности связующего, полностью нивелирующей деформационные напряжения, вызванные перепадом температур, аэродинамическими и гидравлическими нагрузками на гранулы сорбента, т.е. его основные эксплуатационные свойства в процессе работы не меняются. Это достигается за счет дисперсных параметров исходного порошка цеолита, соотношения исходных компонентов, типа связующего, используемых технологических приемов и соблюдения их последовательности.
Способ осуществляется следующим образом.
Готовят суспензию цеолита, для чего порошкообразный кристаллический цеолит смешивают в сухом виде в обычном смесителе в необходимом соотношении со связующим, в качестве которого используются полимеры фторпроизводных этилена, например фторопласт-42 марки «Ф-42В» ГОСТ 25428-82. К полученной смеси в требуемом количестве добавляют растворитель, выбранный из ряда кетонов, например ацетон. После полного растворения связующего полученную суспензию вновь перемешивают любым известным способом до получения однородной массы. Суспензию цеолитового порошка и связующего в растворителе диспергируют в нагретую до температуры не ниже 65°C и не выше 95°C воду. Диспергирование суспензии цеолитового порошка и связующего в растворителе осуществляют любым известным способом, обеспечивающим необходимый для решения конкретной технической задачи размер гранул агломерированного сорбента, например с помощью пневматической форсунки. Полученные сферические гранулы агломерированного цеолита отделяют от жидкости, например, с помощью сита. Затем гранулы подвергают термообработке, например, в вакууме при температуре 100°C. После этого цеолитовый сорбент готов к эксплуатации.
Пример 1
Готовят суспензию цеолита, для чего 3,5 кг порошкообразного кристаллического цеолита с дисперсностью от 1 мкм до 6 мкм смешивают с 1,5 кг порошкообразного фторопласта в обычном смесителе. К полученной смеси добавляют 15 л ацетона. После полного растворения фторопласта полученную суспензию вновь перемешивают в этом же смесителе до получения однородной массы. Полученную суспензию диспергируют с помощью пневматической форсунки в нагретую до температуры 65°C-90°C воду. Полученные сферические гранулы агломерированного цеолита отделяют от жидкости с помощью сита. Гранулы помещают в вакуум-сушильный шкаф и подвергают термообработке при температуре 100°C в течение 2 часов.
Пример 2
Готовят суспензию цеолита, для чего 4 кг порошкообразного кристаллического цеолита с дисперсностью от 2 мкм до 5 мкм смешивают с 1 кг порошкообразного фторопласта в обычном смесителе. К полученной смеси добавляют 15 л ацетона. После полного растворения фторопласта полученную суспензию вновь перемешивают в этом же смесителе до получения однородной массы. Полученную суспензию диспергируют с помощью пневматической форсунки в нагретую до температуры 65°C-80°C воду. Полученные сферические гранулы агломерированного цеолита отделяют от жидкости с помощью сита. Гранулы помещают в вакуум-сушильный шкаф и подвергают термообработке при температуре 150°C в течение 1,5 часов.
Пример 3
Готовят суспензию цеолита, для чего 8,5 кг порошкообразного кристаллического цеолита с дисперсностью от 3 мкм до 4 мкм смешивают с 1,5 кг порошкообразного фторопласта в обычном смесителе. К полученной смеси добавляют 20 л ацетона. После полного растворения фторопласта полученную суспензию вновь перемешивают в этом же смесителе до получения однородной массы. Полученную суспензию диспергируют с помощью пневматической форсунки в нагретую до температуры 65°C-80°C воду. Полученные сферические гранулы агломерированного цеолита отделяют от жидкости с помощью сита. Гранулы помещают в вакуум-сушильный шкаф и подвергают термообработке при температуре 150°C в течение 1,5 часов.
Увеличение дисперсности исходного порошка цеолита выше 6 мкм приводит к уменьшению прочности получаемого агломерированного цеолита (при многократных циклах сорбция-десорбция наблюдается выпадение частиц цеолита из связующего).
При содержании связующего в сухих гранулах агломерированного цеолита меньше 15% снижается их прочность, что может привести к их разрушению при многократном использовании в циклах сорбция-десорбция. Увеличение содержания связующего в сухих гранулах агломерированного цеолита больше 30% нецелесообразно, так как дальнейшее увеличение связующего не приводит к существенному росту прочности сорбента, однако снижает его сорбционную емкость на единицу массы.
На рисунке представлена фотография сегмента гранулы полученного агломерированного цеолита, сделанная с помощью сканирующего электронного микроскопа Neon фирмы Carl Zeiss (Германия). На фотографии во фторопластовом связующем четко видно множество транспортных пор диаметром от 1 до 10 мкм.
Полученные по примерам 1-3 агломерированные цеолитовые сорбенты были исследованы для определения сорбционной емкости на единицу массы, кинетики процесса сорбции паров воды, устойчивости к термическому воздействию и воздействию десорбируемой в циклах воды (количество образующейся пыли). Кроме того, указанные характеристики в аналогичных условиях были определены и у специально синтезированного по примеру, описанному в патенте США № 3795631, агломерированного цеолитового сорбента. Результаты представлены в таблице.
Характеристики агломерированных цеолитовых сорбентов | ||||
Способ получения | Статическая емкость по парам воды, мг/г | Скорость поглощения паров воды, мг/мин | Количество пыли при эксплуатации в течение 50 циклов, мг/г | Время производственного цикла при производстве единицы продукции, час |
По примеру 1 | 126,4 | 25,2 | 0,042 | 1,60 |
По примеру 2 | 149,2 | 30,1 | 0,046 | 1,24 |
По примеру 3 | 172,7 | 34,4 | 0,049 | 1,12 |
По патенту США № 3795631 | 121,3 | 22,5 | 0,187 | 1,96 |
Как видно из приведенных в таблице данных, предложенный способ получения агломерированного цеолитового сорбента позволяет сократить время производственного цикла при получении единицы конечной продукции примерно в 1,2 раза.
При этом сорбционная емкость по парам воды полученного агломерированного цеолитового сорбента и кинетика процесса сорбции увеличиваются по сравнению с формованным цеолитовым сорбентом, полученным по способу по патенту США № 3795631.
Механическая прочность в циклах сорбции-десорбции полученного по изобретению агломерированного цеолитового сорбента, в отличие от агломерированного цеолитового сорбента, полученного по способу по патенту США № 3795631, не снижается.
Класс B01J20/18 синтетические цеолитные молекулярные сита