система цифровой передачи информации
Классы МПК: | G08C19/28 с использованием импульсного кода |
Автор(ы): | Шемигон Николай Николаевич (RU), Кукушкин Сергей Сергеевич (RU), Аношкин Александр Владимирович (RU) |
Патентообладатель(и): | Федеральное государственное унитарное предприятие "Специальное Научно-производственное объединение "Элерон" (ФГУП "СНПО "Элерон") (RU) |
Приоритеты: |
подача заявки:
2011-03-14 публикация патента:
20.03.2012 |
Изобретение относится к телеметрии, технике связи и может быть использовано в системах передачи информации по цифровым каналам связи. Технический результат состоит в повышении точности передачи информации при фиксированных значениях динамического диапазона значений первичного сигнала и стандартного отклонения нормального белого шума в канале связи. Система содержит: на передающей стороне - источник информации, последовательно соединенные преобразователь значения сигнала по модулю (2n-1), первый усилитель в (2n+1) раз, первый сумматор и первый аналого-цифровой преобразователь, последовательно соединенные преобразователь значения сигнала по модулю (2n+1), первый усилитель в (2n-1) раз, второй сумматор и второй аналого-цифровой преобразователь, а также первый формирователь пороговых уровней; на приемной стороне - последовательно соединенные первый преобразователь код/амплитуда импульса, первое вычитающее устройство, квантователь на (2n+1) уровней и второй усилитель в (2n+1) раз, последовательно соединенные второй преобразователь код/амплитуда импульса, второе вычитающее устройство, квантователь на (2n-1) уровней и второй усилитель в (2n-1) раз, последовательно соединенные третий сумматор, усилитель в (2n-1) раз, преобразователь значений выборок по модулю (22n-1), фильтр нижних частот и получатель информации, а также второй формирователь пороговых уровней. 1 ил., 2 табл.
Формула изобретения
Система цифровой передачи информации, содержащая: на передающей стороне - источник информации и первый аналого-цифровой преобразователь, выход которого подключен к первому входу канала связи, на приемной стороне - первый преобразователь код/амплитуда импульса, вход которого соединен с первым выходом канала связи, и последовательно соединенные фильтр нижних частот и получатель информации, отличающаяся тем, что введены: на передающей стороне - первый формирователь пороговых уровней, последовательно соединенные преобразователь значения сигнала по модулю (2n-1), первый усилитель в (2n+1) раз и первый сумматор, последовательно соединенные преобразователь значения сигнала по модулю (2n+1), первый усилитель в (2n-1) раз, второй сумматор и второй аналого-цифровой преобразователь, на приемной стороне - второй формирователь пороговых уровней, последовательно соединенные первое вычитающее устройство, квантователь на (2n+1) уровней и второй усилитель в (2n+1) раз, последовательно соединенные второй преобразователь код/амплитуда импульса, второе вычитающее устройство, квантователь на (2n-1) уровней и второй усилитель в (2n-1) раз, последовательно соединенные третий сумматор, усилитель в (2n) раз и преобразователь значений выборок по модулю (22n-1), при этом первая и вторая группы пороговых выходов первого формирователя пороговых уровней соединены с соответствующими пороговыми входами преобразователя значения сигнала по модулю (2n-1) и преобразователя значения сигнала по модулю (2n+1), информационные входы которых подключены к выходу источника информации, первый и второй опорные выходы первого формирователя пороговых уровней подключены к вторым входам соответственно первого и второго сумматоров, а выход второго аналого-цифрового преобразователя соединен с вторым входом канала связи, второй выход которого подключен к входу второго преобразователя код/амплитуда импульса, выход первого преобразователя код/амплитуда импульса соединен с первым входом первого вычитающего устройства, первый и второй опорные выходы второго формирователя пороговых уровней подключены к вторым входам соответственно первого и второго вычитающих устройств, первая и вторая группы пороговых выходов - к соответствующим пороговым входам соответственно квантователя на (2n+1) уровней и квантователя на (2n-1) уровней, а третья группа пороговых выходов - к соответствующим пороговым входам преобразователя значений выборок по модулю (22n-1), выход которого соединен с входом фильтра нижних частот, выходы второго усилителя в (2n+1) раз и второго усилителя в (2n-1) раз подключены соответственно к первому и второму входам третьего сумматора.
Описание изобретения к патенту
Изобретение относится к телеметрии, технике связи и может быть использовано в системах передачи информации по цифровым каналам связи.
Известна система цифровой передачи информации, содержащая: на передающей стороне - последовательно соединенные источник информации и аналого-цифровой преобразователь, выход которого подключен к входу канала связи, а на приемной стороне - последовательно соединенные цифроаналоговый преобразователь, вход которого подключен к выходу канала связи, и получатель информации [1].
На передающей стороне известной системы цифровой передачи информации источник информации формирует первичный сигнал Sп(t) с динамическим диапазоном Dп=2 2n значений. Сформированный первичный сигнал Sп (t) подают на вход аналого-цифрового преобразователя, на выходе которого формируют цифровой сигнал Sц(t) в виде последовательности кодовых слов, содержащих 2n двоичных символов, путем аналого-цифрового преобразования первичного сигнала Sп (t), выполняемого с выбранным периодом То опроса с шагом квантования d=Uш0/22n, в 22n раз меньшим шкалы Uш0 значений первичного сигнала Sп(t). Сформированный цифровой сигнал Sц (t) передают по каналу связи на приемную сторону. На приемной стороне принимают цифровой сигнал Sц *(t), затем с помощью цифроаналогового преобразователя формируют последовательность Sд(t)= Sп *(t-iTо) восстановленных выборок Sп *(t-iTo) первичного сигнала, после чего восстанавливают первичный сигнал Sп *(t) путем фильтрации полученной последовательности Sд(t) восстановленных выборок первичного сигнала с помощью фильтра нижних частот с частотой среза Fcp =Fo/2=1/(2То), равной половине частоты опроса.
Известная система цифровой передачи информации обеспечивает передачу информации при заданном динамическом диапазоне Dп значений первичного сигнала. Однако из-за действия в канале связи нормального белого шума n(t) с нулевым математическим ожиданием и стандартным отклонением n в словах принятого цифрового сигнала S ц *(t) возникают ошибки, в результате чего значения Sп *(t-jTo) восстановленных выборок первичного сигнала на приемной стороне не совпадают с соответствующими значениями Sп(t-jTo) выборок первичного сигнала на передающей стороне.
Поэтому недостатком известной системы цифровой передачи информации является недостаточная точность передачи информации при фиксированных значениях динамического диапазона Dп значений первичного сигнала Sп (t) и стандартного отклонения n нормального белого шума n(t) в канале связи.
Наиболее близкой к предлагаемой является система цифровой передачи информации, содержащая: на передающей стороне - источник информации и последовательно соединенные вычитающее устройство, вход суммирования которого подключен к выходу источника информации непосредственно, а вход вычитания - через элемент задержки, и аналого-цифровой преобразователь, выход которого подключен к входу канала связи, а на приемной стороне - последовательно соединенные преобразователь код/амплитуда импульса, вход которого соединен с выходом канала связи, интегратор, фильтр нижних частот и получатель информации [2].
На передающей стороне известной системы цифровой передачи информации источник информации формирует первичный сигнал Sп(t) с динамическим диапазоном D п=22n значений. Сформированный первичный сигнал Sп(t) подают на вход суммирования вычитающего устройства непосредственно, а на его вход вычитания - через элемент задержки. На выходе вычитающего устройства формируют передаваемый сигнал Sпp(t)=Sп(t)-Sз(t)=Sп (t)-Sп(t-Тд) путем вычитания из первичного сигнала Sп(t) задержанного первичного сигнала S з(t). Сформированный передаваемый сигнал Sпp (t) подают на вход аналого-цифрового преобразователя, на выходе которого формируют цифровой сигнал Sц(t) в виде последовательности кодовых слов, содержащих 2n двоичных символов, путем аналого-цифрового преобразования передаваемого сигнала Sпp(t), выполняемого с выбранным периодом То опроса с шагом квантования d=Uш0/22n, в 22n раз меньшим шкалы Uш0 значений первичного сигнала Sп (t). Сформированный цифровой сигнал Sц (t) передают по каналу связи на приемную сторону. На приемной стороне принимают цифровой сигнал Sц *(t), затем с помощью преобразователя код/амплитуда импульса формируют принятый сигнал Sпр *(t)= Sпр *(t-iTо) в виде последовательности восстановленных выборок Sпр *(t-iTо), которую подают на вход интегратора. На выходе интегратора получают последовательность Sв(t)= Sп *(t-jTо) восстановленных выборок первичного сигнала, при этом значение Sп *(t-jTо) каждой восстановленной выборки первичного сигнала определяют путем суммирования значения S п *[t-(i-1)Тд] предшествующей восстановленной выборки первичного сигнала и соответствующего значения S пp *(t-iТд) восстановленной выборки принятого сигнала. Затем восстанавливают первичный сигнал S п *(t) путем фильтрации полученной последовательности Sв(t) восстановленных выборок первичного сигнала с помощью фильтра нижних частот с частотой среза Fcp =Fo/2=1/(2То), равной половине частоты опроса.
Известная система цифровой передачи информации обеспечивает сокращение избыточности передаваемой информации при заданном динамическом диапазоне Dп значений первичного сигнала за счет использования разностного представления первичного сигнала. Однако из-за действия в канале связи нормального белого шума n(t) с нулевым математическим ожиданием и стандартным отклонением n в словах принятого цифрового сигнала S ц *(t) возникают ошибки, в результате чего значения выборок Sпp *(t-iTo) принятого сигнала и соответствующие значения S* п(t-jTo) восстановленных выборок первичного сигнала на приемной стороне не совпадают с соответствующими значениями выборок Sпp(t-iTo) передаваемого сигнала и с соответствующими значениями Sп(t-jT o) выборок первичного сигнала на передающей стороне.
Поэтому недостатком известной системы цифровой передачи информации также является недостаточная точность передачи информации при фиксированных значениях динамического диапазона Dп значений первичного сигнала Sп(t) и стандартного отклонения n нормального белого шума n(t) в канале связи.
Технический результат состоит в повышении точности передачи информации при фиксированных значениях динамического диапазона значений первичного сигнала и стандартного отклонения нормального белого шума в канале связи.
Для достижения указанного технического результата в систему цифровой передачи информации, содержащую: на передающей стороне - источник информации и первый аналого-цифровой преобразователь, выход которого подключен к первому входу канала связи, а на приемной стороне - первый преобразователь код/амплитуда импульса, вход которого соединен с первым выходом канала связи, и последовательно соединенные фильтр нижних частот и получатель информации, введены: на передающей стороне - первый формирователь пороговых уровней, последовательно соединенные преобразователь значения сигнала по модулю (2 n-1), первый усилитель в (2n+1) раз и первый сумматор, последовательно соединенные преобразователь значения сигнала по модулю (2n+1), первый усилитель в (2 n-1) раз, второй сумматор и второй аналого-цифровой преобразователь, а на приемной стороне - второй формирователь пороговых уровней, последовательно соединенные первое вычитающее устройство, квантователь на (2n+1) уровней и второй усилитель в (2n +1) раз, последовательно соединенные второй преобразователь код/амплитуда импульса, второе вычитающее устройство, квантователь на (2 n-1) уровней и второй усилитель в (2n-1) раз, последовательно соединенные третий сумматор, усилитель в (2 n-1) раз и преобразователь значений выборок по модулю (2 2n-1), при этом первая и вторая группы пороговых выходов первого формирователя пороговых уровней соединены с соответствующими пороговыми входами преобразователя значения сигнала по модулю (2n-1) и преобразователя значения сигнала по модулю (2n+1), информационные входы которых подключены к выходу источника информации, первый и второй опорные выходы первого формирователя пороговых уровней подключены к вторым входам соответственно первого и второго сумматоров, а выход второго аналого-цифрового преобразователя соединен с вторым входом канала связи, второй выход которого подключен к входу второго преобразователя код/амплитуда импульса, выход первого преобразователя код/амплитуда импульса соединен с первым входом первого вычитающего устройства, первый и второй опорные выходы второго формирователя пороговых уровней подключены к вторым входам соответственно первого и второго вычитающих устройств, первая и вторая группы пороговых выходов - к соответствующим пороговым входам соответственно квантователя на (2n +1) уровней и квантователя на (2n-1) уровней, а третья группа пороговых выходов - к соответствующим пороговым входам преобразователя значений выборок по модулю (22n-1), выход которого соединен с входом фильтра нижних частот, выходы второго усилителя в (2n+1) раз и второго усилителя в (2n-1) раз подключены соответственно к первому и второму входам третьего сумматора.
Предлагаемая система цифровой передачи информации обеспечивает передачу по каналу связи первого и второго цифровых сигналов, последовательности кодовых слов которых соответствуют в моменты опроса усиленным соответственно в (2n+1) и (2n-1) раз значениям первого и второго передаваемых сигналов с динамическими диапазонами Dп1=Dп/(2n-1) и Dп2 =Dп/(2n+1) их значений соответственно. Это позволяет в среднем в соответствующее число раз после соответствующей обработки на приемной стороне уменьшить значение погрешности значений первого и второго принятых дискретных сигналов, что и обеспечивает положительный технический результат - повышение точности передачи информации при фиксированных значениях динамического диапазона Dп значений выборок первичного сигнала и стандартного отклонения n нормального белого шума n(t) в канале связи.
Предлагаемая система цифровой передачи информации может быть реализована с помощью известных функциональных элементов.
На фиг.1 представлена структурная схема системы цифровой передачи информации, в табл.1 и табл.2 представлены значения сигналов в сечениях данной схемы в разные моменты опроса (j=1, , 25) при допустимом значении погрешности макс=1 и шкале значений первичного сигнала U ш0=(22n× макс)=256 для частного случая n=4.
Система цифровой передачи информации на передающей стороне содержит источник 1 информации, последовательно соединенные преобразователь 2 значения сигнала по модулю (2n-1), первый усилитель 4 в (2n+1) раз, первый сумматор 6 и первый аналого-цифровой преобразователь 9, последовательно соединенные преобразователь 3 значения сигнала по модулю (2n+1), первый усилитель 5 в (2n-1) раз, второй сумматор 7 и второй аналого-цифровой преобразователь 10, а также первый формирователь 8 пороговых уровней, первая и вторая группы пороговых выходов которого соединены с соответствующими пороговыми входами преобразователя 2 значения сигнала по модулю (2n-1) и преобразователя 3 значения сигнала по модулю (2n+1), а первый и второй опорные выходы подключены к вторым входам соответственно первого и второго сумматоров 6 и 7. Информационные входы преобразователя 2 значения сигнала по модулю (2n-1) и преобразователя 3 значения сигнала по модулю (2n+1) подключены к выходу источника 1 информации, а выходы первого и второго аналого-цифровых преобразователей 9 и 10 соединены соответственно с первым и вторым входами канала 11 связи.
Система цифровой передачи информации на приемной стороне содержит последовательно соединенные первый преобразователь 12 код/амплитуда импульса, первое вычитающее устройство 14, квантователь 16 на (2n+1) уровней и второй усилитель 18 в (2n+1) раз, последовательно соединенные второй преобразователь 13 код/амплитуда импульса, второе вычитающее устройство 15, квантователь 17 на (2n -1) уровней и второй усилитель 19 в (2n-1) раз, последовательно соединенные третий сумматор 20, усилитель 21 в (2n-1 ) раз, преобразователь 22 значений выборок по модулю (22n -1), фильтр 24 нижних частот и получатель 25 информации, а также второй формирователь 23 пороговых уровней, первый и второй опорные выходы которого подключены к вторым входам соответственно первого и вычитающих устройств 14 и 15, первая и вторая группы пороговых выходов - к соответствующим пороговым входам соответственно квантователя 16 на (2n+1) уровней и квантователя 17 на (2n -1) уровней, а третья группа пороговых выходов - к соответствующим пороговым входам преобразователя 22 значений выборок по модулю (22n-1). Входы первого и второго преобразователей 12 и 13 код/амплитуда импульса соединены соответственно с первым и вторым выходами канала 11 связи, а выходы второго усилителя 18 в (2n+1) раз и второго усилителя 19 в (2n -1) раз подключены соответственно к первому и второму входам третьего сумматора 20.
Система цифровой передачи информации функционирует следующим образом.
На передающей стороне с помощью источника 1 информации формируют первичный сигнал Sп(t) с динамическим диапазоном D п=22n значений, шкала Uш0=(2 2n× макс) значений которого в 22n раз превышает максимально допустимое значение макс погрешности. Значения Sп(t-jT о) первичного сигнала Sп(t) в различные моменты jTo времени (j=1, , 25) приведены в столбцах 2 табл.1 и табл.2.
Далее преобразуют первичный сигнал Sп(t) в первый и второй передаваемые сигналы S1пp(t) и S2пp (t).
Первый передаваемый сигнал S1пp (t) формируют путем преобразования первичного сигнала Sп (t) следующим образом.
Первичный сигнал S п(t) подают на информационный вход преобразователя 2 значения сигнала по модулю (2n-1), на пороговые входы которого с первой группы пороговых выходов первого формирователя 8 пороговых уровней поступают (2n+1) пороговых уровней, значения U1i=i(2n-1)× макс, [i=0,2n], которых равномерно распределены в пределах шкалы Uш0 значений первичного сигнала. С помощью преобразователя 2 значения сигнала по модулю (2n-1) сравнивают значение Sп(t) первичного сигнала со значениями U1i всех (2n+1) пороговых уровней, определяют значение U1iмакс(t) максимального из превышенных пороговых уровней и преобразуют значение S п(t) первичного сигнала путем вычитания из него значения U1iмaкc(t) максимального из превышенных пороговых уровней. В результате на выходе преобразователя 2 значения сигнала по модулю (2n-1) формируют первый преобразованный по модулю (2n-1) сигнал S1пм(t)=Sп (t)-U1iмакс(t), значения S1пм(t-jT o) которого в различные моменты jTo времени приведены в столбце 3 табл.1.
Первый преобразованный по модулю (2n-1) сигнал S1пм(t) подают с выхода преобразователя 2 значения сигнала по модулю (2 n-1) на вход первого усилителя 4 в (2n+1) раз, на выходе которого получают первый усиленный преобразованный сигнал S1пмy(t)=[Sп(t)-U1iмакс (t)](2n+1), значения S1пмy(t-jTo ) которого в различные моменты jTo времени приведены в столбце 5 табл.1.
Первый усиленный преобразованный сигнал S1пмy(t) подают с выхода первого усилителя 4 в (2n+1) раз на первый вход первого сумматора 6, на второй вход которого с первого опорного выхода первого формирователя 8 пороговых уровней поступает первый опорный сигнал, значение которого постоянно и в (2n-1)/2 раз превышает максимально допустимое значение макс погрешности. На выходе первого сумматора 6 получают первый передаваемый сигнал S1пp(t)={[S п(t)-U1iмакс(t)] (2n+1)+ макс(2n-1)/2}, значения S1пp (t-jTo) которого в различные моменты jTo времени приведены в столбце 7 табл.1.
Второй передаваемый сигнал S2пp(t) формируют путем преобразования первичного сигнала Sп(t) следующим образом.
Первичный сигнал Sп(t) подают на информационный вход преобразователя 3 значения сигнала по модулю (2n+1), на пороговые входы которого с второй группы пороговых выходов первого формирователя 8 пороговых уровней поступают (2n -1) пороговых уровней, значения U2i=i(2n +1)× макc, [i=0,(2n-2)], которых равномерно распределены в пределах шкалы Uш0 значений первичного сигнала. С помощью преобразователя 3 значения сигнала по модулю (2n+1) сравнивают значение Sп(t) первичного сигнала со значениями S2i всех (2n-1) пороговых уровней, определяют значение U2iмакс(t) максимального из превышенных пороговых уровней и преобразуют значение S п(t) первичного сигнала путем вычитания из него значения U2iмакс(t) максимального из превышенных пороговых уровней. В результате на выходе преобразователя 2 значения сигнала по модулю (2n+1) формируют второй преобразованный по модулю (2n+1) сигнал S2пм(t)=Sп (t)-U2iмакс(t), значения S2пм(t-jT o) которого в различные моменты моменты jTo времени приведены в столбце 4 табл.1.
Второй преобразованный по модулю (2n+1) сигнал S2пм(t) подают с выхода преобразователя 3 значения сигнала по модулю (2 n+1) на вход первого усилителя 5 в (2n-1) раз, на выходе которого получают второй усиленный преобразованный сигнал S2пму(t)=[Sп(t)-U2iмакс (t)](2n-1), значения S2пму(t-jTo ) которого в различные моменты jТо времени приведены в столбце 6 табл.1.
Второй усиленный преобразованный сигнал S2пму (t) подают с выхода первого усилителя 5 в (2n-1) раз на первый вход второго сумматора 7, на второй вход которого с второго опорного выхода первого формирователя 8 пороговых уровней поступает второй опорный сигнал, значение которого постоянно и в (2n+1)/2 раз превышает максимально допустимое значение макс погрешности. На выходе второго сумматора 7 получают второй передаваемый сигнал S2пp(t)={[S п(t)-U2iмакс(t)](2n-1)+ макс(2n+1)/2}, значения S2пр (t-jTo) которого в различные моменты моменты jT o времени приведены в столбце 8 табл.1.
Сформированные первый и второй передаваемые сигналы S1пp (t) и S2пp(t) подают с выходов первого и второго сумматоров 6 и 7 соответственно на входы первого и второго аналого-цифровых преобразователей 9 и 10, с помощью которых осуществляют аналого-цифровое преобразование указанных сигналов путем их дискретизации с выбранной частотой Fo=1/To опроса, квантования значений полученных в результате дискретизации выборок на 22n уровней и кодирования значений полученных квантованных выборок равномерным двоичным безызбыточным кодом. В результате на выходах первого и второго аналого-цифровых преобразователей 9 и 10 получают первый и второй цифровые сигналы S1ц(t)= S1ц(t-jTo) и S2ц(t)= S2ц(t-jTo) в виде последовательностей двоичных слов S1ц(t-jTo) и S2ц (t-jTo), состоящих из 2n разрядов (значения символов двоичных слов S1ц(t-jTo) и S2ц (t-jTo) сформированных цифровых сигналов S1ц (t) и S2ц(t) в различные моменты jTo времени приведены в столбцах 9 и 10 табл.1).
Сформированные с помощью первого и второго аналого-цифровых преобразователей 9 и 10 первый и второй цифровые сигналы S1ц(t) и S 2ц(t) передают по каналу 11 связи на приемную сторону.
В процессе передачи цифровых сигналов S1ц (t) и S2ц(t) в результате воздействия нормального белого шума происходит искажение символов передаваемых двоичных слов S1ц(t-jTo) и S2ц(t-jT o), поэтому на выходе канала 11 связи могут возникать ошибки. Случайные векторы ошибок N1(t) и N2(t) в словах передаваемых цифровых сигналов S1ц(t) и S 2ц(t) при нулевом математическом ожидании и стандартном отклонении n=3 макс нормального белого шума в различные моменты jTo времени приведены соответственно в столбцах 11 и 12 табл.1 и в столбцах 3 и 4 табл.2.
На приемной стороне принимают полученные искаженные первый и второй цифровые сигналы S1ц *(t) и S2ц *(t) (значения искаженных символов двоичных слов S1ц *(t-jTo) и S2ц *(t-jTo) принятых цифровых сигналов S1ц *(t) и S2ц *(t) в различные моменты jTo времени приведены в столбцах 13 и 14 табл.1 и в столбцах 5 и 6 табл.2), после чего восстанавливают последовательность Sп *(t) выборок первичного сигнала путем преобразования принятых из канала 7 связи искаженных цифровых сигналов S 1ц *(t) и S2ц *(t). Осуществляют это следующим образом.
Полученные первый и второй цифровые сигналы S 1ц *(t) и S2ц *(t) подают с первого и второго выходов канала 11 связи на входы соответственно первого и второго преобразователей 12 и 13 код/амплитуда импульса. С помощью первого и второго преобразователей 12 и 13 код/амплитуда импульса осуществляют преобразование значений двоичных слов S1ц *(t-jTo) и S2ц *(t-jTo) (см. столбцы 13 и 14 табл.1 и столбцы 5 и 6 табл.2) первого и второго принятых цифровых сигналов S1ц *(t) и S2ц *(t) в значения выборок S1пр *(t-jTo) и S2пр *(t-jTo) (значения этих выборок в различные моменты jTo времени приведены в столбцах 7 и 8 табл.2) соответственно первого и второго принятых дискретных сигналов S1пр *(t)= S1пр *(t-jTo) и S2пр *(t)= S2пр *(t-jTo).
Первый и второй принятые дискретные сигналы S1пр *(t) и S2пр *(t) подают с выходов первого и второго преобразователей 12 и 13 код/амплитуда импульса на первые входы соответственно первого и второго вычитающих устройств 14 и 15, на вторые входы которых с первого и второго опорных выходов второго формирователя 23 пороговых уровней подают первый и второй опорные сигналы, значения которых постоянны и в (2n-1)/2 и в (2 n+1)/2 раз соответственно превышают максимально допустимое значение макс погрешности. На выходах первого и второго вычитающих устройств 14 и 15 получают соответственно первый и второй уменьшенные принятые дискретные сигналы S1пму *(t)=S1пр *(t)- макс(2n-1)/2 и S2пму *(t)=S2пр *(t)- макс(2n+1)/2 значения S1пму *(t-jTo) и S2пму *(t-jTo) выборок которых в различные моменты jTo времени приведены соответственно в столбцах 9 и 10 табл.2.
Первый уменьшенный принятый дискретный сигнал S1пму *(t) подают с выхода первого вычитающего устройства 14 на информационный вход квантователя 16 на (2n+1) уровней, на пороговые входы которого с первой группы пороговых выходов второго формирователя 23 пороговых уровней поступают (2n+1) пороговых уровней, значения U1i=i(2 n-1)× макс,[i=0,2n], которых равномерно распределены в пределах шкалы Uш0 значений первичного сигнала. С помощью квантователя 16 на (2n+1) уровней сравнивают значение S1пму *(t-jTo) каждой выборки (см. столбец 9 табл.2) первого уменьшенного принятого дискретного сигнала S1пму *(t) со значениями U1i всех (2 n+1) пороговых уровней, определяют значение U1iмакс (t-jTo) максимального из превышенных пороговых уровней и значение S1пм *(t-jTo)=U1iмакс(t-jT o) каждой квантованной выборки первого уменьшенного принятого дискретного сигнала S1пм *(t) принимают равным соответствующему значению U1iмакс(t-jTo) максимального из превышенных пороговых уровней. В результате на выходе квантователя 16 на (2n+1) уровней формируют первый квантованный уменьшенный принятый дискретный сигнал S1пмy *(t), значения S1пм *(t-jTo) выборок которого в различные моменты jTo времени приведены в столбце 11 табл.2.
Второй уменьшенный принятый дискретный сигнал S 2пмy *(t) подают с выхода второго вычитающего устройства 15 на информационный вход квантователя 17 на (2n-1) уровней, на пороговые входы которого с второй группы пороговых выходов второго формирователя 23 пороговых уровней поступают (2n-1) пороговых уровней, значения U2i=i(2 n+1)× макс, [i=0,(2n-2)], которых равномерно распределены в пределах шкалы Uш0 значений первичного сигнала. С помощью квантователя 17 на (2n-1) уровней сравнивают значение S2пмy *(t-jTo) каждой выборки (см. столбец 10 табл.2) второго уменьшенного принятого дискретного сигнала S2пмy *(t) со значениями U2i всех (2 n-1) пороговых уровней, определяют значение U2iмакс (t-jTo) максимального из превышенных пороговых уровней и значение S2пм *(t-jTo)=U2iмакс(t-jT o) каждой квантованной выборки второго уменьшенного принятого дискретного сигнала S2пм *(t) принимают равным соответствующему значению U2iмакс(t-jTo) максимального из превышенных пороговых уровней. В результате на выходе квантователя 17 на (2n-1) уровней формируют второй квантованный уменьшенный принятый дискретный сигнал S2пмy *(t), значения S2пм *(t-jTo) выборок которого в различные моменты jTo времени приведены в столбце 12 табл.2.
После этого значение S1пм *(t-jTo) каждой выборки первого квантованного уменьшенного принятого дискретного сигнала усиливают с помощью второго усилителя 18 в (2n+1) раз, а значение S 2пм *(t-jTo) каждой выборки второго квантованного уменьшенного принятого дискретного сигнала усиливают с помощью второго усилителя 19 в (2n-1) раз.
Далее первый и второй усиленные квантованные уменьшенные принятые дискретные сигналы (2n+1) S1пм *(t-jTo) и (2n-1)S 2пм *(t-jTo) подают с выходов второго усилителя 18 в (2n+1) раз и второго усилителя 19 в (2n-1) раз соответственно на первый и второй входы третьего сумматора 20, на выходе которого получают единую последовательность S пм *(t) квантованных уменьшенных выборок со значениями S пм *(t-jTo)=(2n+1) S 1пм *(t-jTo)+(2n-l)S2пм *(t-jTo).
Затем с помощью усилителя 21 в (2n-1) раз формируют единую последовательность Sпy *(t) усиленных восстановленных выборок первичного сигнала, значения Sпy *(t-jTo)=(2n-1)S пм *(t-jTo) которых в различные моменты jTo времени приведены в столбце 13 табл.2.
Наконец, с помощью преобразователя 22 значений выборок по модулю (22n-1) формируют последовательность Sп *(t) восстановленных выборок первичного сигнала. Для этого на соответствующие пороговые входы преобразователя 22 значений выборок по модулю (22n-1) с третьей группы пороговых выходов второго формирователя 23 пороговых уровней подают (22n-1) пороговых уровней, значения U3i =i макc, [i=0, 22n-2], которых равномерно распределены в пределах шкалы Uшо значений первичного сигнала. При этом с помощью преобразователя 22 значений выборок по модулю (22n-1) сравнивают значение Sпy *(t-jTo) каждой усиленной восстановленной выборки первичного сигнала со значениями U3i всех (22n-1) пороговых уровней, определяют значение U 3iмакс(t-nТо) максимального из превышенных пороговых уровней и преобразуют значение Sпy *(t-jTo) каждой усиленной восстановленной выборки первичного сигнала путем вычитания из него значения U 3iмакс(t-jТо) максимального из превышенных пороговых уровней. В результате на выходе преобразователя 22 значений выборок по модулю (22n-1) получают последовательность S п *(t)= Sп *(t-jTo) восстановленных выборок первичного сигнала, значения Sп *(t-jTo) которых в различные моменты jTo времени приведены в столбце 14 табл.2.
Последовательность Sп *(t) восстановленных выборок первичного сигнала подают с выхода преобразователя 22 значений выборок по модулю (22n-1) на вход фильтра 24 нижних частот с частотой среза, равной половине частоты Fo опроса. С помощью фильтра 24 нижних частот восстанавливают первичный сигнал S пв(t) путем фильтрации последовательности Sп *(t) восстановленных выборок первичного сигнала.
Восстановленный первичный сигнал Sпв(t) с выхода фильтра 24 нижних частот подают на вход получателя 25 информации.
Основу изобретения составляет такой выбор типа преобразований первичного сигнала, при котором значение погрешности его восстановления на приемной стороне уменьшается в несколько раз при фиксированных значениях динамического диапазона Dп значений первичного сигнала и стандартного отклонения n нормального белого шума n(t) в канале связи.
Например, в приведенном примере (см. табл.1 и табл.2) реализации заявленной системы цифровой передачи информации при значении динамического диапазона значений первичного сигнала Dп=Uш0/ макс=22n=256 (n=4) случайные векторы ошибок N1(t) и N2(t) в словах принимаемых цифровых сигналов S1ц *(t) и S2ц * (t) возникают из-за действия в канале связи нормальных белых шумов n1(t) и n2(t) с нулевым математическим ожиданием и стандартным отклонением n=3 макс. При этом значения N1(t-jT o) и N2(t-jTo) векторов ошибок (см. столбцы 11 и 12 табл.1 и столбцы 3 и 4 табл.2) в различные моменты jTo времени таковы, что примерно соответствуют вероятности ошибки на бит Рб=0,2. Однако значения Sп *(t-jTo) восстановленных выборок (см. столбец 14 табл.2) первичного сигнала на приемной стороне совпадают с соответствующими значениями Sп(t-jT o) выборок (столбец 2 табл.2) первичного сигнала на передающей стороне.
Таким образом, достигается технический результат - повышение точности передачи информации при фиксированных значениях динамического диапазона Dп значений выборок первичного сигнала и стандартного отклонения n нормального белого шума n(t) в канале связи.
Литература
1. Радиотехнические системы передачи информации: Учеб. Пособие для вузов. / В.А.Борисов, В.В.Калмыков, Я.М.Ковальчук и др.; Под. ред. В.В.Калмыкова. - М.: Радио и связь, 1990, с.204-205.
2. Основы построения телекоммуникационных систем и сетей: Учебник для вузов. / В.В.Крухмалев, В.Н.Гордиенко, А.Д.Моченов и др.; Под. ред. В.Н.Гордиенко и В.В.Крухмалева. - М.: Горячая линия - Телеком, 2004, с.238-239.
СИСТЕМА ЦИФРОВОЙ ПЕРЕДАЧИ ИНФОРМАЦИИ
СИСТЕМА ЦИФРОВОЙ ПЕРЕДАЧИ ИНФОРМАЦИИ
Класс G08C19/28 с использованием импульсного кода