способ получения водорода прямым разложением природного газа и снг
Классы МПК: | B01J23/755 никель B01J23/745 железо B01J21/04 оксид алюминия B01J37/02 пропитывание, покрытие или осаждение B01J37/08 термообработка C01B3/26 с использованием катализаторов |
Автор(ы): | АЛИБЕЙЛИ Рафиг (TR), ИБРАХИМОГЛУ Бейкан (TR), ГУЛИЙЕВ Садиг (TR) |
Патентообладатель(и): | ВЕСТЕЛ ЭЛЕКТРОНИК САНАЙИ ВЕ ТИКАРЕТ А.С. (TR) |
Приоритеты: |
подача заявки:
2007-10-18 публикация патента:
27.03.2012 |
Изобретение относится к способу получения водорода с использованием катализаторов. Описан способ получения водорода прямым разложением природного газа или сжиженного нефтяного газа, при этом применяют катализатор на основе никеля-железа-гамма-оксида алюминия, приготовленный путем совместной адсорбции водных растворов азотнокислых солей никеля и железа на гамма-оксиде алюминия, осуществляемой в 2-4 стадии, причем массовое отношение никеля и железа на поверхности катализатора составляет 1:1 и их общая масса составляет 20-40%. Технический результат - повышение выхода водорода. 1 з.п. ф-лы, 6 пр.
Формула изобретения
1. Способ получения водорода прямым разложением природного газа или сжиженного нефтяного газа, отличающийся тем, что при этом применяют катализатор на основе никеля-железа-гамма-оксида алюминия, приготовленный путем совместной адсорбции водных растворов азотнокислых солей никеля и железа на гамма-оксиде алюминия, осуществляемой в 2-4 стадии, причем массовое отношение никеля и железа на поверхности катализатора составляет 1:1, и их общая масса составляет 20-40%.
2. Способ получения водорода по п.1, отличающийся тем, что способ приготовления катализатора включает сушку катализатора и его кальцинацию при 500°С после каждой промежуточной стадии адсорбции водных растворов азотнокислых солей никеля и железа на гамма-оксиде алюминия.
Описание изобретения к патенту
Область изобретения
Настоящее изобретение относится к получению водорода в области нефтехимии, в частности из природного газа или СНГ (сжиженного нефтяного газа), либо из других газовых смесей, содержащих С1 -С4-углеводороды. Получение водорода согласно настоящему изобретению осуществляется путем применения катализатора типа Ni-Fe/ -Al2O3, обладающего повышенной активностью и приготавливаемого особым способом.
Технические задачи, решение которых является целью настоящего изобретения
В настоящее время известны многие способы получения водорода из природного газа. Один из подобных способов, о котором сообщается в Journal of Power Sources (Alessandra Fonseka, Elisabete M. Assaf, Production of the hydrogen by methane steam reforming over nickel catalysts prepared from hydrotalcite precursors, 142 (2005), 154-159), основан на риформинге природного газа, СНГ или других углеводородсодержащих газов водяным потоком, или, как сообщается в Fuel Processing Technology (Shan Xu, Rui Zhao, Xiaolai Wang, Highly coking resistant and stable Ni/Al2 O3 catalysts prepared by W/O microemulsion for partial oxidation of methane, 86 (2004), 123-133), на их частичном окислении. Оба указанных способа осуществляются при температурах, находящихся в интервале от 750°С до 800°С, и при низких значениях давления. Оба указанных способа обладают следующими существенными недостатками:
- способы осуществляются при высоких температурах;
- помимо Н2, способы приводят к образованию СО;
- для полного превращения СО в СО2 необходимо использование особых систем каталитической конверсии.
В дополнение к вышеупомянутым способам существует другой способ, о котором сообщается в Applied Catalysis A: General (Jiuling Chen, Yongdan Li, Zongquan Li, Xixiang Zhang, Production of COx-free hydrogen and nanocarbon by direct decomposition of undiluted methane on Ni-Cu-alumina catalysts, 269 (2004), 179-186) и который основан на прямом разложении метана до водорода и углерода на поверхности катализатора:
СН 4 2Н2+С.
По сравнению со способами, указанными выше, данный способ обладает весьма существенными преимуществами. В ходе его осуществления СО не образуется. Способ прямого разложения метана проводится на многих типах твердых катализаторов. В состав подобных катализаторов входят различные носители, в том числе цеолиты, SiO2, Al2 O3 и т.д., и активные металлы (в том числе Ni, Zn, Cu и т.д.). Для приготовления подобных катализаторов применяются различные способы, в том числе адсорбция, катионный обмен, напыление и т.д.
Наиболее близким к настоящему изобретению способом, известным в уровне техники, является способ, согласно которому метан подвергается прямому каталитическому разложению до водорода и углерода (Jiuling Chen, Yongdan Li, Zongquan Li, Xixiang Zhang, Production of COx-free hydrogen and nanocarbon by direct decomposition of undiluted methane on Ni-Cu-alumina catalysts, Applied Catalysis A: General, 269 (2004), 179-186). Основным недостатком данного способа является необходимость применения высоких температур (700-750°С) для получения высоких значений выхода превращения СН4; среди других недостатков можно перечислить следующие:
- высокие затраты энергии;
- трудность выбора материала для реактора;
- повышение количества образующегося кокса и снижение заданного времени эксплуатации без потребности в окислительной регенерации катализатора;
- сокращение общего срока службы катализатора.
В целях устранения указанных недостатков вышеупомянутых способов в настоящем изобретении предложен способ получения водорода с высоким выходом при относительно низких температурах прямым разложением природного газа, СНГ или других газовых смесей, содержащих С1-С4-углеводороды. Данный способ осуществляется путем применения катализатора типа Ni-Fe/ -Al2O3, обладающего повышенной активностью и приготавливаемого особым способом.
Описание изобретения
Описываемый способ состоит в следующем:
Вначале в соответствии с описываемым способом получают катализатор для прямого разложения метана. Для этого в качестве носителя катализатора применяют промышленный -Al2O3; в качестве активных металлов используют Ni и Fe. Концентрации Ni и Fe на поверхности катализатора меняются в интервале от 5% до 20%. Катализаторы получают путем адсорбции на поверхности носителя водных растворов солей металлов (обычно азотнокислых солей) многостадийным способом. Стадия адсорбции проводится при комнатной температуре. После проведения адсорбции на носителе раствор упаривают; катализатор сушат в воздушной атмосфере. Кальцинацию катализатора осуществляют в печи в воздушной атмосфере.
Катализатор на основе Ni-Fe/ -Al2O3, использованный в настоящем изобретении, по сравнению с известными катализаторами, применяемыми для прямого разложения природного газа (или метана), обладает следующими преимуществами:
- водные растворы солей Ni и Fe адсорбируются на поверхности носителя многостадийным способом, что приводит к большей равномерности распределения указанных активных металлов на поверхности носителя;
- соли Ni и Fe являются совместно адсорбированными на поверхности носителя;
- после проведения каждой промежуточной стадии адсорбции на поверхности носителя катализатор подвергается кальцинации.
Любые катализаторы, приготовленные подобным путем, применяются в способе прямого разложения природного газа или СНГ согласно настоящему изобретению. Способ осуществляется при атмосферном давлении и температуре 550-650°С. Объемная скорость потока природного газа или СНГ, используемых в подобном способе в качестве сырья, изменяется от 720 ч-1 до 4320 ч-1. Степень конверсии метана или природного газа в водород изменяется от 66 до 91% в зависимости от условий осуществления способа.
Подобный способ обладает следующими значительными преимуществами по сравнению с известными способами прямого разложения метана (Jiuling Chen, Yongdan Li, Zongquan Li, Xixiang Zhang, Production of COx-free hydrogen and nanocarbon by direct decomposition of undiluted methane on Ni-Cu-alumina catalysts, Applied Catalysis A: General, 269 (2004), 179-186):
Преимущества катализатора:
- простота технологии приготовления;
- применение в качестве носителя катализатора коммерчески доступного -Al2O3;
- применение в качестве активных компонентов недорогих металлов, в том числе Ni и особенно Fe;
- дешевизна катализатора.
Преимущества способа:
- более низкие рабочие температуры;
- высокая степень конверсии СН4 или С2-С4-газов;
- меньшая стоимость получения Н2.
Состав природного газа и СНГ, используемых в способе в качестве сырья, и газообразных продуктов, получаемых на выходе при осуществлении способа, анализировали путем газовой хроматографии. Количество и тип кокса, образующегося на поверхности катализатора в результате прямого разложения СН4 в соответствии с подобным способом, изучали способом дифференциального термогравиметрического анализа.
Далее настоящее изобретение иллюстрируется следующими примерами:
Пример 1
Описываемым способом приготовили катализатор, содержащий 5% Ni+5% Fe/ -Al2O3. Для этого 3,12 г Ni(NO 3)2·6H2O и 4,56 г Fe(NO 3)3·9H2O солей растворяли в 10 мл дистиллированной воды и полученный раствор адсорбировали на поверхности -Al2O3 (10 г), предварительно высушенного при 150°С в течение 4 ч, в две стадии в течение 12 ч при перемешивании. На первой промежуточной стадии, следующей за адсорбцией, раствор упаривали и катализатор сушили в атмосфере воздуха при 150°С в течение 6 ч и подвергали кальцинации при 500°С в течение 4 ч; затем на второй промежуточной стадии, следующей за адсорбцией, раствор вновь упаривали и сушили катализатор при 150°С в атмосфере воздуха. Затем катализатор подвергали окончательной кальцинации в атмосфере воздуха при 750°С в течение 4 ч. На стадиях кальцинации температуру повышали начиная от 150°С со скоростью 150°С/ч.
Отбирали аликвоту 2,5 г приготовленного катализатора и применяли ее для прямого разложения природного газа. Природный газ, использованный в способе в качестве сырья, имел следующий состав (в % об.): Н2 - 0,14, СН4 - 87,84, С2Н 6 - 4,16, С3 - 1,19, С4-С5 - 0,03, N2 - 5,6, О2 - 0,51, СО2 - 0,43.
Способ осуществляли в непрерывном режиме в экспериментальной системе, содержащей кварцевый реактор с неподвижным слоем, при атмосферном давлении, температуре 650°С и скорости потока газа 30 мл/мин (720 ч-1).
Внутренний диаметр реактора и его длина составляли 2,2 см и 20 см соответственно. Затем газообразные продукты отводили из реактора, охлаждали в водяном охладителе и анализировали способом ГХ. Получили следующий результат:
Степень конверсии СН4 (%)=80,6
Пример 2
Для применения в описываемом способе приготовили катализатор, содержащий 10% Ni+10% Fe/ -Al2O3. Соответственно при синтезе катализатора использовали 6,24 г Ni(NO3)2 ·6H2O и 9,12 г Fe(NO3)3 ·9H2O солей. Адсорбцию водных растворов солей металлов на поверхности катализатора проводили в три стадии.
Условия стадий сушки и кальцинации катализатора после первой и второй промежуточных стадий адсорбции, условия приготовления катализатора и другие условия осуществления способа были идентичны условиям примера 1. Получили следующий результат:
Степень конверсии СН4 (%)=84,8
Пример 3
Для применения в описываемом способе приготовили катализатор, содержащий 20% Ni+20% Fe/ -Al2O3. Соответственно при синтезе катализатора использовали 12,48 г Ni(NO3)2 ·6H2O и 18,24 г Fe(NO3)3 ·9H2O солей. Адсорбцию водных растворов солей металлов на поверхности катализатора при его приготовлении проводили в четыре стадии.
Условия стадий сушки и кальцинации катализатора после первой, второй и третьей промежуточных стадий адсорбции, условия приготовления катализатора и другие условия осуществления способа были идентичны условиям примеров 1 и 2. Получили следующий результат:
Степень конверсии СН4 (%)=91,5
Пример 4
Для применения в описываемом способе приготовили катализатор, содержащий 20% Ni+20% Fe/ -Al2O3. Приготовление катализатора проводили способом четырехстадийной адсорбции. Способ прямого разложения осуществляли при температуре 550°С.
Другие условия приготовления катализатора и осуществления способа были идентичны условиям примеров 1-3. Получили следующий результат:
Степень конверсии СН4 (%)=66,7
Пример 5
Для применения в описываемом способе приготовили катализатор, содержащий 20% Ni+20% Fe/ -Al2O3. Приготовление катализатора проводили способом четырехстадийной адсорбции солей металлов на носителе. Температура осуществления способа прямого разложения составляла 650°С; скорость потока природного газа составляла 180 мл/мин (4320 ч-1).
Другие условия приготовления катализатора и осуществления способа были идентичны условиям примеров 1-4. Получили следующий результат:
Степень конверсии СН4 (%)=87,0
Пример 6
Для применения в описываемом способе приготовили катализатор, содержащий 20% Ni+20% Fe/ -Al2O3. При осуществлении способа в качестве сырья применяли СНГ следующего состава (% об.): Н 2 - 0,2, СН4 - 0,6, С2Н6 - 15,99, С3 - 50,98, С4 - 29,15, С 5 - 0,19, N2 - 1,78, О2 - 1,11. Температура осуществления способа прямого разложения составляла 650°С и скорость потока природного газа составляла 30 мл/мин (720 ч -1).
Другие условия приготовления катализатора и осуществления способа были идентичны условиям примеров 1-5. Получили следующий результат:
Степень конверсии СН4 (%)=94,8.
Класс B01J21/04 оксид алюминия
Класс B01J37/02 пропитывание, покрытие или осаждение
Класс B01J37/08 термообработка
Класс C01B3/26 с использованием катализаторов