высокопрочная немагнитная коррозионно-стойкая литейная сталь и способ ее термической обработки

Классы МПК:C22C38/58 с более 1,5 % марганца по массе
C22C38/44 с молибденом или вольфрамом
C21D6/00 Термообработка сплавов на основе железа
Автор(ы):, , , , , , , ,
Патентообладатель(и):Горбач Владимир Дмитриевич (RU),
Завьялов Юрий Николаевич (RU),
Назаратин Владимир Васильевич (RU),
Дегтярев Александр Федорович (RU)
Приоритеты:
подача заявки:
2010-10-18
публикация патента:

Изобретение относится к области термообработки стали, которую используют при изготовлении литых деталей судовой арматуры и буровой техники. Сталь содержит следующее соотношение компонентов, мас.%: углерод 0,03-0,06, кремний 0,10-0,40, марганец 14,0-16,0, хром 19,00-20,5, никель 8,25-9,0, молибден 0,8-1,25, ванадий 0,08-0,15, ниобий 0,02-0,12, азот 0,57-0,65, титан 0,004-0,03, церий 0,005-0,02, кальций 0,005-0,02, алюминий 0,005-0,02, железо и примеси - остальное. Сталь подвергают гомогенизирующей обработке с нагревом и охлаждением, при этом осуществляют ступенчатый нагрев до температуры 850°С, после чего - до 950°С и затем - до 1100-1150°С, а охлаждение проводят в воде. Изобретение обеспечивает получение немагнитной стали, обладающей высокими механическими свойствами (высокопрочная немагнитная коррозионно-стойкая литейная сталь   и способ ее термической обработки, патент № 2447185 02высокопрочная немагнитная коррозионно-стойкая литейная сталь   и способ ее термической обработки, патент № 2447185 510 МПа, KCUвысокопрочная немагнитная коррозионно-стойкая литейная сталь   и способ ее термической обработки, патент № 2447185 250 Дж/см2) и имеющей в литом состоянии мелкое зерно. 2 н. и 1 з.п. ф-лы, 3 табл.

Формула изобретения

1. Высокопрочная немагнитная коррозионно-стойкая литейная сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, ванадий, азот, церий, кальций и железо, отличающаяся тем, что она дополнительно содержит ниобий, титан и алюминий при следующем соотношении компонентов, мас.%:

углерод0,03-0,06
кремний 0,10-0,40
марганец14,0-16,0
хром 19,00-20,5
никель8,25-9,0
молибден 0,8-1,25
ванадий 0,08-0,15
ниобий0,02-0,12
азот 0,57-0,65
титан0,004-0,03
церий 0,005-0,02
кальций0,005-0,02
алюминий 0,005-0,02
железо и примеси остальное

2. Сталь по п.1, отличающаяся тем, что отношение суммарного содержания ванадия, ниобия, титана и алюминия к суммарному содержанию углерода и азота составляет 0,15-0,50.

3. Способ термической обработки высокопрочной немагнитной коррозионно-стойкой литейной стали, включающий гомогенизирующую обработку с нагревом и охлаждением, отличающийся тем, что обрабатывают сталь по п.1, при этом осуществляют ступенчатый нагрев до температуры 850°С, после чего - до 950°С и затем - до 1100-1150°С, а охлаждение проводят в воде.

Описание изобретения к патенту

Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким литейным сталям, в частности к созданию сталей, которые могут быть использованы для отливок ряда немагнитных высоконагруженных деталей, работающих в условиях интенсивного коррозионного воздействия в энергомашиностроении и в других областях.

Изобретение наиболее эффективно может быть использовано при изготовлении высокоэффективного оборудования для специального судостроения, буровой техники и машиностроения.

Известна для этих целей коррозионно-стойкая немагнитная сталь аустенитного класса POLARIT 774 (Германия DIN 1.4539), она имеет следующий химический состав (мас.%):

Углеродвысокопрочная немагнитная коррозионно-стойкая литейная сталь   и способ ее термической обработки, патент № 2447185 0,02
Кремнийвысокопрочная немагнитная коррозионно-стойкая литейная сталь   и способ ее термической обработки, патент № 2447185 0,7
Марганецвысокопрочная немагнитная коррозионно-стойкая литейная сталь   и способ ее термической обработки, патент № 2447185 2,0
Серавысокопрочная немагнитная коррозионно-стойкая литейная сталь   и способ ее термической обработки, патент № 2447185 0,01
Фосфорвысокопрочная немагнитная коррозионно-стойкая литейная сталь   и способ ее термической обработки, патент № 2447185 0,03
Хром19,0-21,0
Никель 24,0-26,0
Молибден4,0-5,0
Азот высокопрочная немагнитная коррозионно-стойкая литейная сталь   и способ ее термической обработки, патент № 2447185 0,15
Медь1,20-2,0
Железо - остальное

Недостатком этой стали со стабильным аустенитом является низкая прочность и высокое содержание дорогих никеля и молибдена.

Известна для этих целей коррозионно-стойкая немагнитная сталь аустенитного класса следующего состава (мас.%):

Углерод0,04-0,09
Кремний 0,10-0,60
Хром19,0-21,0
Марганец 5,0-12,0
Никель 4,5-9,0
Молибден 0,5-1,5
Ванадий 0,10-0,55
Ниобий0,03-0,30
Кальций 0,005-0,01
Азот0,40-0,70
Железо и примеси - остальное

(см. Патент RU, 2205889, С1, Кл. С22С 38/58, 10.06.2003)

Недостатком данной стали является большой интервал по содержанию основных легирующих элементов, что приводит к разбросу данных по механическим свойствам и структуре. При содержании аустенитообразующих элементов на нижнем уровне, а ферритообразующих на верхнем уровне в структуре стали появляется высокопрочная немагнитная коррозионно-стойкая литейная сталь   и способ ее термической обработки, патент № 2447185 -феррит, что не позволит использовать эту сталь как немагнитную.

Наиболее близкой к предложенной стали по технической сущности и достигаемому результату является сталь следующего состава (мас.%):

Углерод0,04-0,09
Кремний 0,10-0,60
Марганец14,0-16,0
Хром 21,0-23,0
Никель7,0-9,0
Молибден 1,0-2,0
Азот 0,45-0,55
Ванадий0,10-0,30
Церий 0,001-0,030
Кальций0,005-0,010
Бор 0,001-0,010
Железо и примеси - остальное

(см. Патент RU, 2303648, С1, С22С 38/58, 27.07.2007)

Сталь хорошо себя зарекомендовала в кованом варианте. Однако при использовании этой стали в литом варианте наблюдается интенсивный рост зерна, что приводит к снижению механических свойств. Кроме того, при содержании углерода, азота и марганца на нижнем уровне, а кремния, хрома, молибдена и ванадия на верхнем уровне в структуре больших отливок возможно появление высокопрочная немагнитная коррозионно-стойкая литейная сталь   и способ ее термической обработки, патент № 2447185 -феррита, который приводит к нарушению немагнитности стали.

Технический результат - получение литейной высокопрочной коррозионно-стойкой и высоковязкой немагнитной стали с мелким зерном. Этот результат достигается тем, что предлагаемая сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, ванадий, азот, церий, кальций и железо, дополнительно содержит ниобий, титан и алюминий, при следующем соотношении компонентов (мас.%):

Углерод0,03-0,06
Кремний 0,10-0,40
Марганец14,0-16,0
Хром 19,00-20,5
Никель8,25-9,0
Молибден 0,8-1,25
Ванадий 0,08-0,15
Ниобий0,02-0,12
Азот 0,57-0,65
Титан0,004-0,03
Церий 0,005-0,02
Кальций0,005-0,02
Алюминий 0,005-0,02
Железо и примеси - остальное

При этом отношение суммарного содержания ванадия, ниобия, титана и алюминия к суммарному содержанию углерода и азота составляет 0,15-0,50, а для уменьшения дендритной ликвации проводилась гомогенизирующая термообработка, заключающаяся в нагреве до температуры 850°С, далее нагрев до температуры 950°С, далее нагрев до 1100-1150°С, и охлаждение в воду.

Введение в состав стали алюминия в 0,005-0,02 мас.% в сочетании с химически активными элементами кальцием и церием благоприятно изменяет форму неметаллических включений, снижает в стали содержание кислорода и серы, уменьшает количество сульфидных включений, очищает и упрочняет границы зерен и измельчает структуру литой стали, что приводит к повышению прочности, пластичности и ударной вязкости. Кальций и церий благоприятно воздействуют и на характер нитридных включений, способствуют переходу пленочных включений нитридов алюминия в глобулярные комплексы оксисульфонитридных образований. Совместное воздействие алюминия, кальция и церия открывает дополнительные возможности в управлении структурой и свойствами литой стали.

При содержании А1 ниже нижнего предела его воздействие на свойства стали малоэффективно, а при содержании его выше верхнего предела вызывает избыточное обогащение границ зерен неметаллическими включениями, что отрицательно сказывается на свойствах стали. Кроме того, при избыточном содержании Аl резко снижается разливаемость стали.

Микролегирование литейной стали с высоким содержанием азота одновременно ниобием (0,02-0,12 мас.%), ванадием (0,08-0,15 мас.%) и титаном (0,004-0,03 мас.%) повышает прочность, пластичность и ударную вязкость термообработанной стали за счет измельчения действительного зерна, снижения содержания углерода в мартенсите и повышения сил межатомных связей и величины сопротивления отрыву. После оптимальной термообработки сталей происходит их сильное упрочнение с сохранением высокой ударной вязкости за счет компенсирующего влияния измельчения зерна. Карбиды и нитриды ванадия, ниобия и титана имеют близкие параметры кристаллической решетки и обладают неограниченной взаимной растворимостью и образуют карбонитриды. Растворение при нагреве карбонитридов ниобия происходит при более высокой температуре, чем соединений ванадия. Полное растворение карбонитридов ванадия заканчивается при 800-900°С, а карбонитридов ниобия при температуре около 1100°С. Алюминий, нитрид которого растворяется в аустените при более высоких температурах, также способствует измельчению зерна и препятствует его росту при нагреве.

Дополнительное введение ниобия 0,02-0,12 мас.% способствует связыванию углерода в карбиды и карбонитриды, что препятствует образованию карбидов хрома на границах зерен. Кроме того, растворение при нагреве карбонитридов ниобия происходит при более высокой температуре, чем образование соединений ванадия при температуре около 1100°С, что способствует измельчению зерна и препятствует его росту при нагреве.

При содержании ниобия ниже нижнего предела его воздействие на величину зерна, и соответственно, на прочность и пластичность малоэффективно, а при содержании ниобия выше верхнего предела увеличивается количество крупных карбидов и карбонитридов, что приведет к снижению пластичности.

Дополнительное введение титана 0,004-0,03 мас.% смещает начало образования нитридов алюминия в более низкотемпературную область, что способствует предотвращению выделения пленочных нитридов алюминия. Образующийся при введении в сталь титана карбонитрид титана растворяется в аустените при более высокой температуре - более 1200°С, что способствует повышению прочности и пластичности за счет карбонитридов титана, препятствующих росту зерна при нагреве. Дисперсные карбиды и карбонитриды оказывают барьерное действие на мигрирующую границу зерен. Карбонитриды титана имеют более округлую форму и меньшие по сравнению с нитридами титана размеры. Карбонитриды титана распределены сравнительно равномерно в литом металле, часть этих включений имеет тенденцию концентрироваться в междуветвиях дендритов и в междендритном пространстве.

При содержании титана ниже нижнего предела его воздействие на величину зерна, и соответственно, на прочность и пластичность малоэффективно, а при содержании титана выше верхнего предела увеличивается количество крупных остроугольных нитридов титана, что приведет к снижению пластичности.

Предлагаемая сталь отличается от известной меньшим содержанием углерода 0,03-0,06 мас.%, против 0,04-0,09 мас.%, что является оптимальным для обеспечения высокой технологичности и способствует получению высокой прочности, коррозионной стойкости и более высоких значений пластичности и ударной вязкости.

При содержании углерода ниже нижнего предела его действие на технологические и служебные свойства малоэффективно, а при содержании углерода выше верхнего предела ускоряется коалесценция карбидов и обеднение твердого раствора, что снижает пластичность и коррозионную стойкость.

Предлагаемая сталь отличается от известной меньшим содержанием хрома 19,0-20,5 мас.%, против 21,0-23,0 мас.%, что является оптимальным для обеспечения стабильности аустенита и высокой коррозионной стойкости.

При содержании хрома ниже нижнего предела снижается растворимость азота в расплаве, что снижает прочность стали, а при содержании хрома выше верхнего предела возможно образование некоторого количества высокопрочная немагнитная коррозионно-стойкая литейная сталь   и способ ее термической обработки, патент № 2447185 -феррита и нарушается немагнитность стали.

Предлагаемая сталь отличается от известной меньшим содержанием молибдена 0,8-1,25 мас.%, против 1,0-2,0 мас.%, что является оптимальным для обеспечения стабильности аустенита и высокой коррозионной стойкости.

При содержании молибдена ниже нижнего предела уменьшается коррозионная стойкость стали, а при содержании молибдена выше верхнего предела, особенно при содержании ферритообразующих элементов на верхнем уровне, возможно образование ферритной фазы, что приведет к изменению немагнитности стали.

Предлагаемая сталь отличается от известной большим содержанием азота 0,57-0,65 мас.%, против 0,50-0,55 мас.%, что является оптимальным для обеспечения стабильности аустенита и высокой прочности и коррозионной стойкости.

При содержании азота ниже нижнего предела уменьшается стабильность аустенита стали, особенно при содержании ферритообразующих элементов на верхнем уровне, возможно образование ферритной фазы, что приведет к изменению немагнитности стали, а при содержании азота выше верхнего предела увеличивается количество крупных карбонитридов и нитридов, что приведет к снижению пластичности.

Для эффективного воздействия на величину зерна литой стали необходимо выполнение условия: отношение суммарного содержания ванадия, ниобия, титана и алюминия к азоту и углероду равно 0,15-0,50. Значение коэффициента менее 0,15 нежелательно, так как количество образующихся карбидов и карбонитридов недостаточно для сдерживания роста зерна в литой стали, а соотношение этих элементов более 0,50 приводит к охрупчиванию стали, за счет образования крупных карбидов и карбонитридов, которые формируются в расплаве и не растворяются при термической обработке.

Предлагаемая сталь отличается от известной режимом термической обработки, заключающимся в проведении гомогенизирующей термообработки, включающей нагрев до температуры 850°С, далее нагрев до температуры 950°С, далее нагрев до 1100-1150°С, охлаждение в воду. Закалку в воду от температур 1050-1100°С для обеспечения необходимых прочностных характеристик по мере необходимости, так как меняя температуру нагрева под закалку можем повышать прочностные характеристики при температуре 1050°С и снижать при температуре 1100°С за счет разной легированности твердого раствора.

Температуры ступеней нагрева выбраны исходя из температур растворения карбидов и карбонитридов ванадия, ниобия и титана, что обеспечивает большую однородность твердого раствора, по сравнению с режимом для стали-прототипа. Для стали-прототипа применямый режим термообработки - обычный нагрев до температуры 1100°С с последующей закалкой в воде, в значительно меньшей мере устраняет дендритную ликвацию (см. «Литейное производство», 2009, № 6, с.23-28) по сравнению с предложенным режимом термической обработки.

В таблице 1 приведен химический состав предлагаемой стали 3-х плавок (1, 2, 3), а также состав стали-прототипа (4).

Выплавку проводили в 150-кг индукционной печи с разливкой металла на литые заготовки. Для уменьшения дендритной ликвации проводилась гомогенизирующая термообработка, заключающаяся в нагреве до температуры 850°С, выдержке 2,5 ч, далее нагреве до температуры 950°С, выдержке 2,5 ч, далее нагреве до 1100-1150°С, выдержке 3 ч, охлаждении в воду. Закалка в воду от температур 1050°С, выдержка 3 ч.

В таблице 2 приведены механические свойства, полученные после оптимальной термообработки.

Испытания на растяжение проводили на цилиндрических образцах пятикратной длины с диаметром расчетной части 6 мм в соответствии с ГОСТ 1497-84. Определение ударной вязкости при нормальной температуре производилось на образцах типа 11 по ГОСТ 9454-78. Фазовый состав металла определяли на рентгеновском дифрактометре ДРОН-4.

Как видно из таблицы 2, предлагаемая сталь имеет значительное преимущество по уровню прочности, пластичности и ударной вязкости по сравнению со сталью-прототипом. Предложенная гомогенизирующая термообработка обеспечила значительное уменьшение дендритной ликвации. Уменьшилась также разница микротвердости в дендритах и междендритных пространствах (таблица 3) по сравнению со структурой после литья без термообработки. Микротвердость определялась на микротвердомере ПМТ-3 при нагрузке 5 гс. После предложенной термообработки тонкие ветви дендритов полностью растворились, а более крупные ветви дендритов приобретают глобулярную форму. После травления выявлены белые участки, которые представляют оси дендритной структуры, а темные участки - междендритные участки.

Предложенный состав стали и способ термообработки позволил обеспечить в структуре стали более однородную структуру и мелкое зерно, по сравнению со сталью-прототипом, что обеспечивается дополнительным легированием стали Ti, Nb и Аl и выбранным соотношением элементов.

Предложенная сталь может быть использована в качестве высокопрочного немагнитного коррозионно-стойкого материала для специального судостроения и буровой техники. Предлагаемая сталь прошла широкие лабораторные исследования и рекомендована к промышленному опробованию.

Таблица 1
Химический состав предлагаемой и известной стали
Состав Содержание элементов, мас.%
высокопрочная немагнитная коррозионно-стойкая литейная сталь   и способ ее термической обработки, патент № 2447185 С SiМn СrNi MoV NbTi CaСе NAl SP Fe
1 0,03 0,1014,0 19,08,25 0,800,08 0,020,004 0,0050,005 0,57 0,0050,006 0,015 остальное
20,04 0,2515,0 20,08,45 0,980,12 0,090,01 0,010,008 0,600,008 0,0550,015 остальное
3 0,060,40 16,020,5 9,01,25 0,150,12 0,030,02 0,0250,65 0,020,008 0,009остальное
4 0,040,60 14,323,0 7,01,95 0,30- -0,01 0,0250,48 -0,005 0,010остальное

Таблица 2
Механические свойства предлагаемой и известной сталей
Состав стали высокопрочная немагнитная коррозионно-стойкая литейная сталь   и способ ее термической обработки, патент № 2447185 0,2,МПа высокопрочная немагнитная коррозионно-стойкая литейная сталь   и способ ее термической обработки, патент № 2447185 В,МПа высокопрочная немагнитная коррозионно-стойкая литейная сталь   и способ ее термической обработки, патент № 2447185 ,%высокопрочная немагнитная коррозионно-стойкая литейная сталь   и способ ее термической обработки, патент № 2447185 ,%КСV, Дж/см 2Фазовый состав (магнитность)Средний размер зерна, мкм
1520 76856 60280 У48
2 510775 5358 275У 45
3 530 78052 56250 У43
4 394690 3850 200высокопрочная немагнитная коррозионно-стойкая литейная сталь   и способ ее термической обработки, патент № 244718554

Таблица 3
Микротвердость предлагаемой стали
Режим термообработки Область отпечатка Микротвердость, Нµ
Без термообработки (литое состояние) Темная356
Светлая 318
Гомогенизирующая термообработка Темная318
Светлая 318

Литература

Патент RU, 2205889, С1, С22С 38/58, 10.06.2003).

Патент RU, 2303648, С1, С22С 38/58, 27.07.2007).

Патент RU, 2102522, C1, С22С 38/60, 20.01.1998).

Патент RU, 2284365, С1, С22С 38/30, 27.09.2006).

Патент RU, 2116374, С1, С22С 38/58, 27.07.1998).

Патент RU, 2246554, С1, С22С 38/58, 20.02.2005).

Патент RU, 2007111654, А, С22С 38/38, 20.10.2008).

Патент RU, 2207397, С2, С22С 38/58, 27.06.2003).

Патент RU, 2092606, С1, С22С 38/18, 10.10.1997).

Патент RU, 2284365, С1, С22С 38/30, 27.09.2006).

Патент RU, 2102522, C1, С22С 38/60, 20.01.1998).

Патент RU, 2367710, C1, С22С 38/60, 20.09.2009).

Патент RU, 2318068, С2, С22С 38/48, 27.02.2008).

Патент RU, 2158319, С1, С22С 38/18, 27.10.2000).

Патент RU, 2360029, C1, C22C 38/58, 27.06.2009.

«МИТОМ», 2007, № 5, c.9-18.

«МИТОМ», 2005, № 11, c.9-14.

«Литейное производство», 2009, № 6, с.23-28.

Класс C22C38/58 с более 1,5 % марганца по массе

термостойкая аустенитная сталь, обладающая стойкостью к растрескиванию при снятии напряжений -  патент 2528606 (20.09.2014)
трубная сталь -  патент 2525874 (20.08.2014)
холоднодеформируемая сталь повышенной прочности и состоящее из нее плоское изделие -  патент 2524027 (27.07.2014)
листовая конструкционная нержавеющая сталь, обладающая превосходной коррозионной устойчивостью в сварном шве, и способ ее производства -  патент 2522065 (10.07.2014)
коррозионностойкая высокопрочная сталь -  патент 2519337 (10.06.2014)
способ получения металлоизделия с заданным структурным состоянием -  патент 2516213 (20.05.2014)
малоактивируемая жаропрочная радиационностойкая сталь -  патент 2515716 (20.05.2014)
сталь -  патент 2514901 (10.05.2014)
высокопрочная среднеуглеродистая комплекснолегированная сталь -  патент 2510424 (27.03.2014)
высокопрочная гальванизированная листовая сталь и способ ее изготовления -  патент 2510423 (27.03.2014)

Класс C22C38/44 с молибденом или вольфрамом

высокопрочная броневая сталь и способ производства листов из нее -  патент 2520247 (20.06.2014)
высокопрочная нержавеющая сталь для нефтяных скважин и труба из высокопрочной нержавеющей стали для нефтяных скважин -  патент 2519201 (10.06.2014)
среднеуглеродистая конструкционная сталь высокой обрабатываемости резанием -  патент 2511008 (10.04.2014)
низкоуглеродистая конструкционная сталь с улучшенной обрабатываемостью резанием -  патент 2503736 (10.01.2014)
нержавеющая сталь для нефтяной скважины, труба из нержавеющей стали для нефтяной скважины и способ получения нержавеющей стали для нефтяной скважины -  патент 2494166 (27.09.2013)
высокопрочная коррозионно-стойкая сталь -  патент 2493285 (20.09.2013)
супербейнитная сталь и способ ее получения -  патент 2479662 (20.04.2013)
способ криогенной обработки аустенитной стали -  патент 2464324 (20.10.2012)
труба из высокопрочной нержавеющей стали с превосходной устойчивостью к растрескиванию под действием напряжений в сульфидсодержащей среде и устойчивостью к высокотемпературной газовой коррозии под действием диоксида углерода -  патент 2459884 (27.08.2012)
применение конструкционного материала и электролизера, изготовленного из такого материала -  патент 2457271 (27.07.2012)

Класс C21D6/00 Термообработка сплавов на основе железа

способ термической обработки отливок из коррозионностойкой стали мартенситного класса -  патент 2526107 (20.08.2014)
способ термомеханической обработки сталей аустенитного класса -  патент 2525006 (10.08.2014)
способ термической обработки монокристаллов ферромагнитного сплава fe-ni-co-al-ti с эффектом памяти формы и сверхэластичностью, ориентированных вдоль [001] направления при деформации растяжением -  патент 2524888 (10.08.2014)
способ термической обработки жаропрочных сталей мартенситного класса -  патент 2520286 (20.06.2014)
способ термической обработки жаропрочного и жаростойкого сплава х65нвфт -  патент 2515145 (10.05.2014)
способ термической обработки жаропрочного и жаростойкого сплава х65нвфт -  патент 2514899 (10.05.2014)
способ термической обработки магнитотвердых сплавов системы железо-хром-кобальт -  патент 2511136 (10.04.2014)
состав сплава, нанокристаллический сплав на основе fe и способ его формования и магнитный узел -  патент 2509821 (20.03.2014)
способ термической обработки деформируемой коррозионно-стойкой стали 14х17н2 -  патент 2508410 (27.02.2014)
способ смягчающей термической обработки изделий из стали аустенитно-мартенситного класса марки 07х16н6 -  патент 2499842 (27.11.2013)
Наверх