способ дебензилирования 2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазаизовюрцитана
Классы МПК: | C07D487/22 в которых конденсированная система содержит четыре или более гетероциклических кольца |
Автор(ы): | Козлов Александр Иванович (RU), Збарский Витольд Львович (RU), Игнатов Александр Владимирович (RU), Пинчук Юрий Анатольевич (RU), Кузнецов Леонид Александрович (RU), Меркин Александр Александрович (RU), Комаров Александр Алексеевич (RU), Рыбин Вадим Евгеньевич (RU), Михайлов Юрий Михайлович (RU), Мизгунова Елена Николаевна (RU), Видяева Татьяна Игоревна (RU) |
Патентообладатель(и): | Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) (RU) |
Приоритеты: |
подача заявки:
2010-10-21 публикация патента:
20.04.2012 |
Настоящее изобретение относится к химической технологии органических соединений, а именно к способу восстановительного дебензилирования 2,6,8,12-тетраацетилдибензилгексаазаизовюрцитана, заключающемуся в том, что две бензильные группы замещают на водород в восстановительной среде на палладиевом катализаторе в присутствии кислоты, отличающийся тем, что восстановление проводят молекулярным водородом на гетерогенном катализаторе и носитель для активного катализатора изготавливают, нанося последовательно на гранулированный -оксид алюминия сначала -оксид алюминия и затем пироуглерод, активный катализатор - гидроксокомплексы палладия высаживают на поверхность пироуглерода. Технический результат: разработан новый способ восстановительного дебензилирования 2,6,8,12-тетраацетилдибензилгексаазаизовюрцитана, при котором использование указанного выше носителя резко уменьшает измельчение катализатора, его потери при фильтровании и обеспечивает высокий выход целевого продукта. 3 пр.
Формула изобретения
Способ восстановительного дебензилирования 2,6,8,12-тетраацетилдибензилгексаазаизовюрцитана, заключающийся в том, что две бензильные группы замещают на водород в восстановительной среде на палладиевом катализаторе в присутствии кислоты, отличающийся тем, что восстановление проводят молекулярным водородом на гетерогенном катализаторе и носитель для активного катализатора изготавливают, нанося последовательно на гранулированный -оксид алюминия сначала -оксид алюминия и затем пироуглерод, активный катализатор - гидроксокомплексы палладия высаживают на поверхность пироуглерода.
Описание изобретения к патенту
Настоящее изобретение относится к химической технологии органических соединений, более строго к химии полиядерных азотсодержащих соединений и еще точнее к методам получения замещенных гексаазаизовюрцитанов.
Замещенные гексаазаизовюрцитаны являются промежуточными продуктами при синтезе нового энергоемкого соединения - 2,4,6,8,10,12-гексанитро-2,4,6,8,10,12-гексаазаизовюрцитана, представляющего большой интерес в качестве мощного ВВ или компонента твердых ракетных топлив [1].
Несмотря на наличие множества методов синтеза этого соединения, стадией определяющей эффективность и экономичность всего производства является восстановительное дебензилирование 2,4,6,8,10,12-гексабензил-2,4,6,8,10,12-гексаазаизовюрцитана. Процесс осуществляют в две стадии, на первой из которых образуется 2,6,8,12-тетраацетил-4,10-дибензил-2,4,6,8,10,12-гексаазаизовюрцитан. Для превращения последнего в 2,4,6,8,10,12-гексанитро-2,4,6,8,10,12-гексаазаизовюрцитан из-за сложности прямого нитрования предложен ряд методов замещения двух оставшихся бензильных групп [1]. К их числу относится формилирование, нитрозизование в 4,10-положение либо замещение оставшихся бензильных групп на атом водорода. Последний способ является предпочтительным, так как уменьшает количество образующихся побочных продуктов и снижает долю окислительных реакций на стадии нитрования. В литературе описан ряд методов получения 2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазаизовюрцитана [2-5].
В прототипе [2] (пат. Великобритании 2333292) предложен способ восстановительного дебензилирования тетраацилдибензилгексаазаизовюрцитанов, заключающийся в том, что две бензильные группы замещают на водород в восстановительной среде на катализаторе Pd/C в присутствии кислоты (пункты 16-23 формулы изобретения). В качестве кислоты используют муравьиную кислоту, которая одновременно является восстанавливающем агентом. В качестве катализатора в прототипе использовали 5% Pd на активированном угле, соотношение между катализатором и 2,6,8,12-тетраацетил-4,10-дибензил-2,4,6,8,10,12-гексаазаизовюрцитана близко к 1:1 (по массе). Реакция проводится в воде, смеси воды с органическим растворителем или непосредственно в среде муравьиной кислоты. Основными недостатками метода являются необходимость в большом количестве катализатора и его малая механическая прочность, что приводит к измельчению катализатора в ходе экспериментов, снижению активности и большим потерям при переработке.
Целью настоящего изобретения является способ восстановительного дебензилирования 2,6,8,12-тетраацетилдибензилгексаазаизовюрцитана, заключающийся в том, что две бензильные группы замещают на водород в восстановительной среде на палладиевом катализаторе в присутствии кислоты, отличающийся тем, что восстановление проводят молекулярным водородом и носитель для активного катализатора - металлического палладия - изготавливают, нанося последовательно на гранулированный -оксид алюминия сначала -оксид алюминия и затем пироуглерод.
Использование такого носителя резко уменьшает измельчение катализатора, его потери при фильтровании и обеспечивает высокий выход целевого продукта.
В предлагаемом авторами способе используется катализатор, в котором на поверхность -Al2O3 нанесено 5-15% -Al2O3 (от массы -Al2O3). Затем на слой последнего нанесен слой пироуглерода (1-3% от массы носителя). На поверхность пироуглерода высаживается активный катализатор-палладий в виде гидроксокомплексов, масса которого составляет 2-20% от общей массы катализатора. Такой катализатор, обладая развитой поверхностью, обеспечивает высокий выход целевого продукта 2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазаизовюрцитана. Температура составляет 70-80°С, давление водорода 0,5-2 МПа.
Проведение восстановительного дебензилирования 2,4,6,8,10,12-гексабензил-2,4,6,8,10,12-гексаазаизовюрцитана до 2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазаизовюрцитана в одну стадию (минуя выделение 2,6,8,12-тетраацетил-4,10-дибензилгексаазаизовюрцитана) нецелесообразно, так как удаление двух последних бензильных групп катализируется кислотой, которая разрушает исходный продукт, что приводит к резкому снижению выхода целевого вещества. Добавление уксусной кислоты и воды в реактор после завершения синтеза 2,6,8,12-тетраацетил-4,10-дибензилгексаазаизовюрцитана и проведение дальнейшего дебензилирования в их присутствии, также сопровождается падением выхода 2,6,8,12-тетраацетилгексаазаизовюрцитана
Пример 1
Получение 2,6,8,12-тетраацетил-4,10-гексаазаизовюрцитана.
В реактор объемом 310 мл с возвратно-поступательным перемешиванием помещают 10 г 2,6,8,12-тетраацетил-4,10-дибензилгексаазаизовюрцитана и 100 мл уксусной кислоты. Непосредственно перед подачей водорода в реактор помещают 1 г катализатора с размером гранул 100-150 мкм. Носитель катализатора состоит из трех элементов: внутренний слой - -Al2O3, на поверхность которого нанесен слой, содержащий 8-10% -Al2O3, и на последний нанесен слой пироуглерода, масса которого составила 2,0% от массы носителя. Масса палладия, высаженного на поверхность пироуглерода в виде гидроксокомплексов, составляет 10% от массы катализатора. Сразу после загрузки катализатора реактор 3-4 раза продувают водородом для удаления воздуха, после чего поднимают давление водорода до 1 МПа, в течение 20 мин поднимают температуру 70°С и выдерживают при этой температуре в течение часа. О завершении реакции судят по прекращению поглощения водорода. После охлаждения реакционной массы до комнатной температуры отфильтровывают осадок - катализатор, раствор, содержащий целевой продукт, выпаривают досуха. Полученные кристаллы растворяют в воде, отделяют нерастворившуюся часть - непрореагировавший тетраацетилдибензилгексаазаизовюрцитан и фильтрат снова упаривают досуха. Выпавшие кристаллы перекристаллизовли из диметилформамида и идентифицировали методами ИК-спектроскопии и ТСХ. Выход 70%, вещество начинает разлагаться 350°С. Рассев катализатора после опыта показал, что более 97% исходных гранул остается на сите 100 мкм, что свидетельствует о практическом отсутствии истирания в процессе эксперимента.
Пример 2
По условиям и порядку проведения синтеза аналогичен примеру 1. На опыт было взято 11,6 г 2,6,8,12-тетраацетил-4,10-дибензилгексааза-изовюрцитана и 3,4 г катализатора, содержащего 10% Pd. Температура 70°С, давление 1 МПа, общее время процесса - 40 мин. Выход тетраацетилгексаазаизовюрцитана составил 81,8%.
Пример 3
По условиям и порядку проведения синтеза аналогичен примеру 1. На опыт было взято 24,5 г 2,6,8,12-тетраацетил-4,10-дибензилгексаазаизовюрцитана и 3 г катализатора, содержащего 10% Pd. Температура 75°С, давление 2 МПа, общее время процесса - 2,5 часа. Выход тетраацетилгексаазаизовюрцитана составил 87,7%.
Источники информации
1. Лобанова А.А., Орлова З.В. Химия энергоемких соединений. Изд-во Алт. Гос. Техн. ун-та, 2005. - 110 с.
2. Пат. Великобритании № 2333292.
3. Пат. США № 6297373.
4. Пат. США № 6472525.
5. Пат. США № 7129348.
Класс C07D487/22 в которых конденсированная система содержит четыре или более гетероциклических кольца