способ получения сульфоксидов

Классы МПК:C07C315/02 образованием сульфоновых или сульфоксидных групп окислением сульфидов или образованием сульфоновых групп окислением сульфоксидов
Автор(ы):,
Патентообладатель(и):Учреждение Российской Академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН (RU)
Приоритеты:
подача заявки:
2010-10-18
публикация патента:

Изобретение относится к способу получения оптически чистых сульфоксидов. Способ включает взаимодействие несимметричных тиоэфиров, имеющих в своем составе алкильные и/или ароматические заместители, с хиральными комплексами титана, либо молибдена, либо ванадия с тетрадентатными О,N,N,О-донорными лигандами саланового типа, представляющими собой производные бис(салицил)этилендиамина, и окислителем в среде растворителя. Растворитель выбран из группы, включающей метиленхлорид, хлороформ, тетрахлорметан, толуол, метанол либо их смесь. Технический результат - снижение соотношения катализатор/субстрат. 3 з.п. ф-лы, 3 ил., 3 табл., 2 пр.

способ получения сульфоксидов, патент № 2448954 способ получения сульфоксидов, патент № 2448954 способ получения сульфоксидов, патент № 2448954

Формула изобретения

1. Способ получения оптически чистых сульфоксидов при взаимодействии несимметричных тиоэфиров, имеющих в своем составе алкильные и/или ароматические заместители, с хиральными комплексами титана, либо молибдена, либо ванадия с тетрадентатными О,N,N,О-донорными лигандами саланового типа, представляющими собой производные бис(салицил)этилендиамина, и окислителем в среде любого из перечисленных растворителей: метиленхлорида, хлороформа, тетрахлорметана, толуола, метанола либо их смеси.

2. Способ по п.1, отличающийся тем, что в качестве хиральных комплексов металлов с тетрадентатными О,N,N,О-донорными лигандами используют предпочтительно хиральные комплексы титана с О,N,N,О-донорными лигандами саланового типа, представляющими собой производные бис(салицил)этилендиамина.

3. Способ по п.1, отличающийся тем, что окислителем может быть пероксид водорода либо аддукт пероксида водорода с мочевиной H2 O2·(NH2)2CO.

4. Способ по п.1, отличающийся тем, что хиральные комплексы металлов используют заранее приготовленные либо получаемые in situ.

Описание изобретения к патенту

Изобретение относится к области органической химии и гомогенного катализа, а именно к разработке нового каталитического процесса стереоселективного каталитического окисления тиоэфиров для синтеза оптически чистых хиральных сульфоксидов.

Хиральные сульфоксиды находят все более широкое применение в процессах асимметрического синтеза благодаря способности сульфинильной группы служить эффективным хиральным контроллером в образовании С-С и С-Х связей (Прилежаева Е.Н. Химия сульфоксидов и сульфонов // Получение и свойства органических соединений серы, Л.И.Беленький, ред., Москва: Химия, 1998). Кроме того, многие сульфоксиды проявляют биологическую активность, что позволяет использовать их в качестве фармпрепаратов / Kalir A., Kalir H.H. Biological activity of sulfoxides and sulfones // In The Chemistry of Sulfur-Containing Functional Groups, S.Patai, Z.Rappoport, Eds., Wiley: New York, 1993, p.957-975).

Выделяют три общих подхода к синтезу энантиомерно чистых органических соединений: (1) разделение рацемических смесей, например классическое расщепление через диастереомеры, хроматографическре разделение, энзиматическое разделение, кинетическое разделение, (2) химическую модификацию природных хиральных соединений и (3) асимметрический синтез (Julien Legros, Juan R. Dehli, Carsten Bolm. Applications of Catalytic Asymmetric Sulfide Oxidations to the Syntheses of Biologically Active Sulfoxides // Adv. Synth. Catal. 2005, v.347, p.19-31).

Основным подходом к синтезу оптически чистых сульфоксидов в настоящее время является асимметрический синтез, причем наиболее перспективным представляется каталитический асимметрический синтез, поскольку в последнем случае открывается возможность получать много хиральных молекул продукта с использованием всего одной хиральной молекулы катализатора.

На сегодняшний день единственным применяемым в промышленности способом асимметрического каталитического окисления тиоэфиров в сульфоксиды является модифицированный способ Кагана-Модены, в котором катализатором выступает получаемый in situ комплекс титана(IV) с (S,S)-диэтилтартратом. Однако существующие методики требуют присутствия до 30 мол.% титана и 60 мол.% диэтилтартрата, а в качестве окислителя используется токсичный кумилгидропероксид или трет-бутилгидропероксид, обладающий резким запахом (Cotton H., Elebring Т., Larsson M., Li L., Sörensen H., von Unge S. Asymmetric synthesis of esomeprazole // Tetrahedron: Asymmetry, 2000, v.11, p.3819-3825).

Другие известные способы, основанные на применении вместо (S,S)-диэтилтартрата других хиральных лигандов, например 1,2-дифенилэтан-1,2-диола, позволяют снизить соотношение титан:пирметазол до 5 мол.% (Jiang В., Zhao X.-L., Dong J.-J., Wang W.-J., Eur. J. Org. Chem. 2009, p.987-991), при этом в качестве окислителя также используются органические гидропероксиды.

Отметим, что в заявке на изобретение WO 03089408 описан способ получения хиральных замещенных пиридинилметилсульфинильных бензимидазолов и их солей с помощью окисляющего агента в органическом растворителе в присутствии основания и катализатора, состоящего из комплекса титана или ванадия с хиральным монодентатным лигандом. Окислитель при этом выбирается из пероксида водорода, алкилгидропероксидов и алкиларилгидропероксида. Однако использование пероксида водорода и алкиларилгидропероксида не подтверждено примерами, содержащимися в WO 03089408.

В патенте ЕА 009385 описан способ энантиоселективного синтеза отдельных энантиомеров модафинила путем взаимодействия прохирального сульфида с комплексом металла с хиральным лигандом, основанием и окисляющим агентом в среде органического растворителя. При этом в качестве комплекса металла с хиральным лигандом используется хиральный комплекс титана, циркония, марганца или ванадия, который получают из соединения металла, хирального лиганда и воды. При этом окислитель представляет собой пероксид водорода, трет-бутилгидропероксид и гидропероксид кумола. Однако использование пероксида водорода не подтверждено примерами, содержащимися в ЕА 009385. Кроме того, в качестве хиральных лигандов авторы подтвердили примерами только (S,S)-диэтилтартрат и (R,R)-диэтилтартрат.

В патенте WO 2010029950 описаны способы приготовления комплексов титана с саленовыми, салаленовыми и салановыми лигандами, предназначенных для применения в процессах получения оптически активных эпоксисоединений и сульфоксидов. В частности, авторами описан синтез ряда комплексов титана с лигандами, содержащими O-алкильные, О-арильные либо О-алкиларильные заместители в орто-положениях фенильных заместителей арильных колец, в связи с чем эти лиганды следует отнести к достаточно узкому и специфическому классу гексадентатных (O,O,N,N,O,O-донорных). В то же время WO 2010029950 не сообщает о возможности проведения процессов получения оптически чистых сульфоксидов в присутствии комплексов титана, молибдена, ванадия с тетрадентатными O,N,N,O-донорными салановыми лигандами в различных органических растворителях.

Очевидно, для целей получения фармацевтических препаратов, к чистоте и безопасности для человека которых предъявляются повышенные требования, целесообразно максимально снизить количество катализатора - комплекса металла - и воспользоваться наиболее безопасным для человека и окружающей среды (и при этом доступным) окислителем, таким как Н2О2. Кроме того, для достижения наибольшей эффективности желательно (1) максимально упростить технический процесс, например загружать готовый к употреблению катализатор, а не готовить его in situ, (2) повысить количество совершаемых катализатором циклов и соответственно снизить соотношение катализатор/субстрат.

Таким образом, изобретение решает задачу упрощения процесса получения оптически чистых органических сульфоксидов и повышение экологической безопасности этого процесса.

Технический результат - снижение соотношения катализатор/субстрат, использование доступного и экологически безопасного окислителя, например Н2О2.

Задача решается способом получения оптически чистых сульфоксидов, который осуществляют при взаимодействии несимметричных тиоэфиров, имеющих в своем составе алкильные и/или ароматические заместители, с хиральными комплексами титана, либо молибдена, либо ванадия с тетрадентатными О,N,N,О-донорными лигандами саланового типа, представляющими собой производные бис(салицил)этилендиамина, и окислителем в среде любого из перечисленных растворителей: метиленхлорида, хлороформа, тетрахлорметана, толуола, метанола либо их смеси. В качестве хиральных комплексов металлов с тетрадентатными О,N,N,О-донорными лигандами используют предпочтительно хиральные комплексы титана с О,N,N,О-донорными лигандами саланового типа, представляющими собой производные бис(салицил)этилендиамина. Окислителем может быть пероксид водорода либо аддукт пероксида водорода с мочевиной Н2О2·(NH2)2СО. Хиральные комплексы металлов используют заранее приготовленные либо получаемые in situ.

В частности, настоящим изобретением предлагается новый способ получения оптически чистых сульфоксидов, основанный на процессе селективного окисления прохиральных тиоэфиров 30% пероксидом водорода, в присутствии каталитических количеств (способ получения сульфоксидов, патент № 2448954 1 мол.%) хиральных комплексов титана, молибдена или ванадия типа 1 с тетрадентатными О,N,N,О-донорными лигандами саланового типа - производных бис(салицил)этилендиамина (см. Фиг.1, примеры строения салановых лигандов и салановых комплексов титана, где X,Y,Z = алкил, арил, галоген, NO2). В качестве предпочтительных катализаторов используют хиральные комплексы титана.

При этом не требуется использовать никакие дополнительные каталитические добавки, как-то: вода, кислоты, щелочи, соли, комплексы, донорные лиганды и т.д., либо буферные соединения.

Готовить катализаторы можно так, как описано в статье (Bryliakov K.P., Talsi E.P. Titanium-salan-catalyzed asymmetric oxidation of sulfides and kinetic resolution of sulfoxides with H2O 2 as the oxidant // Eur. J. Org. Chem., 2008, p.3369-3376) или в Примере 2. В качестве катализаторов можно использовать как заранее приготовленные комплексы титана, так и получаемые in situ.

Было установлено, что комплексы титана, обладающие данным строением, способны катализировать стереоселективное окисление тиоэфиров до сульфоксидов пероксидом водорода, причем лучшим для данной реакции растворителем является метиленхлорид CH2Cl2, т.к. в нем образуются сульфоксиды с наибольшим выходом и энантиомерным избытком.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1.

Получение хиральных алкиларилсульфоксидов окислением соответствующих тиоэфиров пероксидом водорода в присутствии каталитических количеств салановых комплексов титана.

К раствору саланового комплекса титана 1a-i (1 мкмоль или 0.2 мкмоль) в 2 мл CH2Cl2, термостатированному при заданной температуре, добавляют 0.1 ммоль сульфида и необходимое количество 30% водного пероксида водорода одной порцией. Перемешивают полученный раствор на магнитной мешалке до достижения нужной глубины протекания реакции (1-48 ч), контролируя протекание реакции с помощью ТСХ (элюент: EtOAc/гексан).

В реакционную смесь добавляют 1 мл воды. Органическую фазу отделяют и отгоняют растворитель в токе сжатого воздуха. Остаток экстрагируют 8 мл ССl4, экстракт осушают CaSO4 и анализируют с помощью 1Н ЯМР. Энантиомерный избыток (ЭИ) определяют с помощью 1Н ЯМР с хиральным реагентом сдвига Eu(hfc) 3.

Пример 2.

Получение хиральных алкиларилсульфоксидов окислением соответствующих тиоэфиров пероксидом водорода в присутствии каталитических количеств салановых комплексов титана, получаемых in situ.

К раствору саланового лиганда a-i (1.68-3.0 мкмоль) в CH2Cl2 добавляют Ti(O-i-Pr)4 (2.0 мкмоль) и перемешивают в течение 30 мин при комнатной температуре. Образец термостатируют при нужной температуре и добавляют 0.1 ммоль сульфида и необходимое количество 30% водного пероксида водорода одной порцией. Перемешивают полученный раствор на магнитной мешалке до достижения нужной глубины протекания реакции (1-48 ч), контролируя протекание реакции с помощью ТСХ (элюент: EtOAc/гексан).

В реакционную смесь добавляют 1 мл воды. Органическую фазу отделяют и отгоняют растворитель в токе сжатого воздуха. Остаток экстрагируют 8 мл CCl4, экстракт осушают CaSO4 и анализируют с помощью 1Н ЯМР. Энантиомерный избыток (ЭИ) определяют с помощью 1Н ЯМР с хиральным реагентом сдвига Eu(hfc) 3. Окисление по данному способу показывает более низкую хемо- и энантиоселективность, чем по способу, описанному в примере 1.

Результаты окисления различных сульфидов в присутствии каталитических количеств комплексов 1 приведены в таблице 1.

Выяснилось, что комплексы данного типа являются наиболее подходящими для окисления тиоэфиров с двумя объемными заместителями, такими как PhSCH2Ph. Именно для этого субстрата наблюдался наибольший выход и энантиоселективность реакции, причем наилучшие каталитические свойства показал комплекс 1g (X=Ph, Y=Н) (таблица 1). Энантиомерный избыток образующегося бензилфенилсульфоксида возрастал при увеличении соотношения окислитель/субстрат одновременно с повышением доли сульфона в продуктах реакции (таблица 1, опыты 14-17), что свидетельствовало о существовании кинетического разделения образующихся сульфоксидов в процессе дальнейшего их окисления до сульфона (Bryliakov K.P., Talsi Е.Р. Titanium-salan-catalyzed asymmetric oxidation of sulfides and kinetic resolution of sulfoxides with H2O2 as the oxidant // Eur. J. Org. Chem., 2008, p.3369-3376). Катализатор оказался способен осуществлять не менее 500 каталитических циклов без снижения энантиоселективности (ср. таблица 1, опыты 17-20). Было также показано, что понижение температуры способствует росту селективности по сульфоксиду и энантиомерного избытка (таблица 1, ср. опыты 15 и 21).

Данные о влиянии растворителя и температуры на асимметрическое окисление ряда тиоэфиров приведены в таблице 2. Наилучшим растворителем для данной реакции является CH2Cl2, в то время как использование CHCl3, CCl4, толуола и метанола приводит к более низким значениям энантиомерного избытка получаемых сульфоксидов (примеры 1-5). Показано также, что наилучшим окислителем является пероксид водорода, а применение аддукта пероксида водорода с мочевиной Н2О2·(NH 2)2СО (пример 4) приводит к более низким значениям энантиомерного избытка.

В таблице 3 приведены результаты энантиоселективного окисления тиоэфиров пероксидом водорода в присутствии каталитических количеств комплексов ряда переходных металлов с тетрадентатными О,N,N,О-донорными лигандами, получаемых in situ. Показано, что наивысшие величины энантиомерных избытков достигаются в присутствии комплексов титана, в то время как использование комплексов ванадия и молибдена дает более низкие значения энантиомерных избытков.

Явление кинетического разделения сульфоксидов было более подробно изучено на примере двух сульфоксидов: PhS-i-Pr и PhSCH2Ph (Фиг.2). На Фиг.2 показан выход сульфоксида и сульфона и энантиомерный избыток (ЭИ) сульфоксида в зависимости от соотношения окислитель/субстрат при окислении PhS-i-Pr (а) и PhSCH2Ph (b). Катализатор 1g, CH2Cl2, 25°С, сульфид/[1]=100:1.

Было показано, что с ростом соотношения окислитель/субстрат энантиомерный избыток для данных сульфоксидов монотонно возрастает (приближаясь в случае PhSOCH2Ph к 99%), при этом, однако, снижается доля целевого продукта - сульфоксида - в реакционной смеси и возрастает доля продукта дальнейшего окисления сульфоксида - сульфона.

На Фиг.3 представлен выход сульфоксида и сульфона и энантиомерный избыток (ЭИ) сульфоксида в зависимости от соотношения окислитель/субстрат при окислении PhSCH2 Ph (а). Содержание сульфида, сульфоксида и сульфона в реакционной смеси по окончании реакции при окислении PhSCH2Ph (b). Катализатор 1g, 5°С, сульфид/[1]=100:1.

Таблица 1
Энантиоселективное окисление сульфидов системой комплекс титана 1/H2O2.
способ получения сульфоксидов, патент № 2448954
Комплекс [O]/[S] [моль/моль] Сульфид Время реакции [ч] Выход сульфоксид/сульфон [%][а] Селективность [%][b] ЭИ [%][c] (конфигурация)
11d 1.12PhSCH3 2 77.5/12.087.0 45.0 (R)
2 1d1.12 p-BrPhSCH3 270.5/10.5 87.0 42.0 (R)
31d 1.28PhS-i-Pr 3 52.2/40.056.6 69.5 (R)
4 1d1.6 PhSCH2Ph 351.0/47.6 51.7 86.0 (R)
51e 1.12PhSCH3 2 76.0/16.582.0 46.7 (R)
6 1e1.12 p-BrPhSCH3 268.3/10.7 86.5 39.0 (R)
71e 1.28PhS-i-Pr 3 60.5/21.073.5 64.0 (R)
8 1e1.6 PhSCH2Ph 362.0/34.0 64.5 74.5 (R)
91h 1.28PhS-i-Pr 2.5 23.0/3.585.0 4.5 (R)
10 1h1.12 PhSCH2Ph 2.526.5/3.0 90.0 4.0 (R)
111g 1.12p-BrPhSCH 316 72.5/13.584.0 16.0 (S)
12 1g1.12 PhSiPr16 47.5/27.063.5 69.0 (S)
13 1i1.12 PhSCH2Ph 275.0/17.0 81.5 60.0 (S)
141g 0.64PhSCH2 Ph16 48.0/4.092.5 82.0 (S)
15 1g1.12 PhSCH2Ph 275.0/19.0 80.0 88.0 (S)
161g 1.36PhSCH2 Ph4 73.5/22.077.0 90.5 (S)
17 1g1.6 PhSCH2Ph 465.0/34.5 65.5 97.0 (S)
181g 1.6PhSCH2 Ph4 63.5/35.564.0 97.0 (S)
19 1g1.6 PhSCH2Ph 2449.5/14.5 77.5 77.0 (S)
201g 1.6PhSCH2 Ph[d] 4834.0/3.0 91.5 60.0 (S)
211g[e] 1.12 PhSCH2Ph 876.5/17.5 81.0 93.5 (S)
[Субстрат]:[комплекс титана]=100:1 моль/моль (опыты 1-17 и 19), 500:1 моль/моль (опыт 18), 1000:1 моль/моль (опыт 19), 2000:1 моль/моль (опыт 20). Представлены результаты реакций согласно Примеру 1 при 25°С (опыты 1-18) и +5°С (опыт 19) в CH2Cl2. Начальная концентрация сульфида 0.05 М.
[a] Определены из соотношения сульфида, сульфоксида и сульфона в реакционной смеси по данным 1Н ЯМР.
[b] Селективность по сульфоксиду.
[с] Энантиомерный избыток полученного сульфоксида.
[d] Начальная концентрация сульфида 0.1 М.
[е] При +5°С.

Таблица 2
Влияние растворителя, температуры на энантиоселективное окисление PhSCH2Ph, PhSiPr и 2-NaphSMe в присутствии катализаторов типа 1
Комплекс Темп. [°C] Растворитель [O]/[S] [моль/моль] [S]/[Cat] [моль/моль] Время реакции [ч] Выход сульфоксид/сульфон [%][а] Селективность [а] ЭИ (конфигурация) [%][b]
11g 25CHCl3 1.6 1004 58.0/27.568.0 88.0 (S)
2 1g25 CCl4 1.6100 48.0/7.0 53.057.5 (S)
3 1g25 толуол1.6 1004 23.0/26.047.0 66.5 (5)
4 1g[c] 25метанол 1.1250 1560.0/3.0 95.0 14.0 (S)
51g 25CH2 Cl21.6 100 465.0/34.5 65.5 97.0 (S)
61d 0CH2 Cl21.12 100 571.0/15.5 82.0 81.0 (R)
71e 0CH2 Cl21.12 100 567.5/10.0 87.0 75.5 (R)
81g 0CH2 Cl21.12 100 577.5/13.0 85.5 92.5 (S)
91d 0[d] CH2Cl2 1.28100 660.5/31.0 66.0 72.5 (R)
101d 0[e] CH2Cl2 1.28100 685.5/14.0 85.5 59.0 (R)
Начальная концентрация сульфида 0.05 М, если не указано иное. В качестве субстрата использовали PhSCH2Ph, если не указано иное.
[a] Определены из соотношения сульфида, сульфоксида и сульфона в реакционной смеси по данным 1Н ЯМР. Селективность определена по сульфоксиду.
[b] Значения энантиомерных избытков (ЭИ) измерены с помощью метода 1Н NMR с хиральным реагентом сдвига Eu(hfc)3 в CCl4.
[c] В качестве окислителя использовали аддукт пероксида водорода с мочевиной H2O2·(NH 2)2CO.
[d] В качестве субстрата использовали PhSiPr.
[e] В качестве субстрата использовали 2-NaphSMe.

Таблица 3
Энантиоселективное окисление сульфидов системой лиганд/источник металла/Н2О2
способ получения сульфоксидов, патент № 2448954
Лиганд/металл Источник металла Тиоэфир Время реакции [ч] Выход сульфоксид/сульфон [%][а] Селективность [а] [%] ЭИ (конфигу-

рация) [%] [b]
1g/Mo=1.0 МоО2(асас) 2PhSCH 2Ph24 79.5/12.0 87.08.5 (R)
2 g/Mo=1.0 МоО2(асас)2 PhSCH3 2482.0/10.5 88.5 0
3 a/Mo=1.5 МоО2(асас) 2p-CH 3PhSCH3 2457.0/3.0 95.0 2.5 (5)
4g/V=1.5 VO(acac)2 PhSCH2 Ph15 86.0/10.589.0 8.5 (R)
5 a/V=1.5VO(асас) 2p-CH 3PhSCH3 485.8/5.5 94.010.0 (R)
6 g/V=1.5VO(O-n-Bu) 3p-BrPhSCH 314 89.5/6.093.7 2.0 (R)
7 2/V=1.5VO(O-n-Bu) 3p-CH 3PhSCH3 1451.5/6.5 89.0 6.0 (S)
8d/V=1.5 [c]VO(O-n-Bu) 3p-BrPhSCH 320 32.0/4.587.5 37.5 (R)
9 d/V=1.5VO(O-n-Bu) 3p-CH 3PhSCH3 1482.0/12.5 86.5 19.5 (R)
10e/V=1.0 VO(O-n-Bu)3 p-CH3PhSCH3 1585.5/14.0 85.9 17.0 (R)
11e/V=1.0 VO(O-n-Bu)3 p-BrPhSCH3 1578.0/13.5 85.2 13.5 (R)
12d/Ti=1.0 Ti(O-i-Pr)4 PhSCH2 Ph5 62.5/29.568.0 62.5 (R)
13 e/Ti=1.0Ti(O-i-Pr) 4PhSCH 2Ph5 64.5/26.5 70.562.0 (R)
14 g/Ti=1.0Ti(O-i-Pr) 4PhSCH 2Ph2.5 62.5/14.5 81.064.0 (S)
15 g/Ti=1.0Ti(O-i-Pr) 4PhSCH 2Ph15 68.8/17.0 80.060.0 (S)
Соотношение [окислитель]:[субстрат]:[металл]=56:50:1. Реакцию вели при 25°С в CH2Cl2. Начальная концентрация сульфида 0.05 М.
[a] Определены из соотношения сульфида, сульфоксида и сульфона в реакционной смеси по данным 1H ЯМР. Селективность определена по сульфоксиду.
[b] Значения энантиомерных избытков (ЭИ) измерены с помощью метода 1Н NMR с хиральным реагентом сдвига Eu(hfc)3 в CCl4.
[c] Реакцию вели в CHCl3 при -12°С без перемешивания.

Было показано, что понижение температуры позволяет повысить хемо- и стереоселективность окисления PhSCH2Ph (Фиг.3). Так, при проведении каталитической реакции при +5°С был достигнут энантиомерный избыток 98.5% при соотношении окислитель/субстрат 1.34 (при этом выход сульфоксида составил 65.8%). Максимальный выход сульфоксида (72-77%) достигается при соотношении окислитель/субстрат 1.05-1.15, что позволяет рекомендовать использование таких соотношений для проведения препаративных каталитических синтезов.

Таким образом, впервые показано, что салановые комплексы титана способны катализировать окисление тиоэфиров пероксидом водорода с высокой селективностью до 72-77% и энантиоселективностью до 98.5%. Наилучшие результаты были показаны при окислении тиоэфиров с двумя объемными заместителями (такими как PhS-i-Pr и PhSCH 2Ph), которые могут рассматриваться в качестве реалистичных моделей биологически активных соединений. Высокий уровень асимметрической индукции достигается в результате одновременного стереоселективного окисления сульфидов/кинетического разделения сульфоксидов. Катализаторы способны выполнять до 500 каталитических циклов без снижения энантиоселективности. Катализаторы данного типа используют хиральные лиганды, приготавливаемые из доступных предшественников, нетоксичный металл, экологически безопасный окислитель. Окисление проводится в предпочтительном растворителе дихлорометане, который благодаря низкой температуре кипения (+39.8°С при 760 торр) легко отгоняется от реакционной смеси. Хемо- и энантиоселективность окисления можно повысить понижением температуры проведения реакции.

Класс C07C315/02 образованием сульфоновых или сульфоксидных групп окислением сульфидов или образованием сульфоновых групп окислением сульфоксидов

соединения для лечения воспаления -  патент 2520034 (20.06.2014)
способ получения диметилсульфона -  патент 2490254 (20.08.2013)
способ получения диметилсульфоксида -  патент 2440336 (20.01.2012)
способ получения диметилсульфоксида -  патент 2409561 (20.01.2011)
энантиоселективный способ получения производных сульфоксидов -  патент 2380357 (27.01.2010)
способ получения диметилсульфона -  патент 2377235 (27.12.2009)
способ получения сульфоксидов каталитическим окислением тиоэфиров -  патент 2374225 (27.11.2009)
производные феноксиуксусной кислоты -  патент 2360901 (10.07.2009)
способ получения сульфоксидов каталитическим окислением тиоэфиров -  патент 2349583 (20.03.2009)
синтез кислородзамещенных бензоциклогептенов в качестве ценных промежуточных продуктов для получения тканеселективных эстрогенов -  патент 2310643 (20.11.2007)
Наверх