способ нанесения покрытий

Классы МПК:C23C24/04 осаждение частиц за счет удара или кинетической энергии
B23H9/00 Обработка специальных металлических объектов или для получения специального эффекта или результата на металлических объектах
Автор(ы):, , , , , , , ,
Патентообладатель(и):Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Сухопутных войск Общевойсковая академия Вооруженных Сил Российской Федерации" (RU)
Приоритеты:
подача заявки:
2010-05-12
публикация патента:

Изобретение относится к технологии нанесения покрытий на поверхности чугунных изделий с использованием неорганического порошка и может быть использовано в различных отраслях машиностроения, в частности при восстановлении формы и размеров металлических деталей, изготовлении и ремонте изделий, требующих герметичности, повышенной коррозионной стойкости, жаростойкости и адгезионно-кргезионной прочности. Технический результат - увеличение адгезионной прочности газодинамических покрытий на деталях. Способ включает нагрев сжатого воздуха, подачу его в сверхзвуковое сопло, формирование в сопле сверхзвукового воздушного потока, подачу в поток порошкового материала, содержащего порошки алюминия, цинка и карбида кремния, направление его на поверхность обрабатываемого изделия для формирования покрытия. При этом перед формированием покрытия на поверхность детали с помощью оборудования для электроискровой обработки наносится слой нихрома Х20Н80 ГОСТ 12766-90 электродом способ нанесения покрытий, патент № 2450087 4 мм при силе тока 6 А, частоте вибрации электрода 250 Гц, время обработки 0,5 мин/см2. 2 ил., 1 табл., 1 пр. способ нанесения покрытий, патент № 2450087

способ нанесения покрытий, патент № 2450087 способ нанесения покрытий, патент № 2450087

Формула изобретения

Способ нанесения покрытия на чугунные детали, включающий нагрев сжатого воздуха, подачу его в сверхзвуковое сопло, формирование в сопле сверхзвукового воздушного потока, подачу в поток порошкового материала, содержащего порошки алюминия, цинка и карбида кремния, направление его на поверхность обрабатываемой детали для формирования покрытия, отличающийся тем, что перед нанесением покрытия на поверхность детали с помощью оборудования для электроискровой обработки наносится слой нихрома Х20Н80 ГОСТ 12766-90 электродом способ нанесения покрытий, патент № 2450087 4 мм при силе тока 6 А, частоте вибрации электрода 250 Гц, времени обработки 0,5 мин/см2.

Описание изобретения к патенту

Изобретение относится к технологии нанесения покрытий на поверхности изделий, а именно к газодинамическим способам нанесения покрытий с использованием неорганического порошка, и может быть использовано в различных отраслях машиностроения, в частности при восстановлении формы и размеров металлических деталей, изготовлении и ремонте изделий, требующих герметичности, повышенной коррозионной стойкости, жаростойкости и адгезионно-когезионной прочности.

Известен способ нанесения покрытий (патент РФ № 2306368, МПК C23C 24/04, 2006) [1], заключающийся в подаче абразивного порошкового материала с размером частиц 30-300 мкм, нагреве сжатого воздуха, подаче его в сверхзвуковое сопло, формировании в сопле сверхзвукового воздушного потока, подаче в поток порошкового материала в сопле сверхзвуковым потоком и направлении его на поверхность обрабатываемого изделия, причем перед обработкой детали абразивным порошковым материалом на поверхность детали наносят флюс со временем активности 0,2-0,25 часа, содержащий до 30% хлористого аммония NH4Cl, до 70% хлористого цинка ZnCl2 и до 2% перманганата калия KMnO4 , и осуществляют нагрев поверхности по флюсу горелкой с окислительным пламенем до температуры (0,14-0,2)·Тпл, где Т пл - температура плавления чугуна.

Недостатком данного способа является низкая адгезионная прочность покрытия на чугунных деталях и усложненный технологический процесс.

Технический результат направлен на увеличение адгезионной прочности газодинамических покрытий на чугунных деталях и сокращение времени на технологический процесс.

Технический результат достигается тем, что в способе нанесения покрытия на чугунные детали, включающем нагрев сжатого воздуха, подачу его в сверхзвуковое сопло, формирование в сопле сверхзвукового воздушного потока, подачу в поток порошкового материала, предназначенного для формирования покрытия, и направление его на поверхность обрабатываемого изделия, причем перед нанесением покрытия на поверхность детали с помощью оборудования для электроискровой обработки наносится слой нихрома Х20Н80 ГОСТ 12766-90 электродом способ нанесения покрытий, патент № 2450087 4 мм при силе тока 6 А, частоте вибрации электрода 250 Гц, времени обработки 0,5 мин/см2.

Отличительными признаками от прототипа является то, что перед нанесением покрытия на поверхность детали с помощью установки для электроискровой обработки наносится слой нихрома Х20Н80 ГОСТ 12766-90 электродом способ нанесения покрытий, патент № 2450087 4 мм при силе тока 6 А, частоте вибрации электрода 250 Гц, времени обработки 0,5 мин/см2.

Заявленный способ соответствует категории «новизна» и позволяет сделать вывод о соответствии критерию «существенное отличие».

На фиг.1 приведена схема процесса нанесения покрытия с применением электроискровой обработки. На фиг.2 - зависимость адгезионной прочности газодинамического покрытия от шероховатости (Rz) и от марки электрода.

Способ осуществляется следующим образом.

На поверхность восстанавливаемой чугунной детали 1 наносится с помощью оборудования для электроискровой обработки слой 2 нихрома Х20Н80 ГОСТ 12766-90 электродом 3 при силе тока 6 А, частоте вибрации электрода 250 Гц, времени обработки 0,5 мин/см2 (табл.1), при электроискровой обработке деталей изменяются физико-механические свойства материала и микрогеометрия поверхности, которая характеризуется продольными и поперечными параметрами профиля, определяющими его несущую способность. [2] К ним согласно ГОСТ 2789-73 относятся высота (На, мкм), радиус (RB, мкм), шаг волны - среднее расстояние между неровностями (Sm, мкм), высотные микронеровности профиля (Rmax, Rz, Rp и R a, мкм), средний радиус закругления вершин (r, мкм), число пятен фактического контакта (nг), средняя площадь секущих сегментов (Aср, мм2), после этого на образовавшийся слой 2 наносят газодинамическое покрытие 4 с помощью оборудования «ДИМЕТ 403», разработанного и изготовляемого Обнинским центром порошкового напыления [3].

Вследствие вышеизложенного можно сделать вывод, что при нанесении на поверхность чугунной детали предложенного слоя нихрома изменяются физико-механические свойства материала и микрогеометрия поверхности. Нанесенный на рабочую поверхность детали слой имеет прочную связь с основой, так как его образование сопровождается химическим и диффузным процессами, и, как следствие, увеличение адгезионной прочности газодинамических покрытий.

Пример реализации способа.

С использованием оборудования типа «БИТ 4» и «ДИМЕТ-403» восстанавливались образцы, вырезанные из чугунного картера раздаточной коробки (СЧ28) автомобиля УрАЛ 4320. При этом наносилось алюминий-цинковое покрытие толщиной 200-400 мкм. Порошковый материал, предназначенный для формирования покрытия, содержал порошок алюминия с размером частиц 1-50 мкм, порошок цинка с размером частиц 1-100 мкм и порошок карбида кремния с размером частиц 1-60 мкм. Сжатый воздух перед подачей в сверхзвуковое сопло нагревался до температуры 400°C, статистическое давление в месте ввода порошка в сопло поддерживалось 0,8-0,9 атм. [1]. На стадии подготовки поверхности на образцы наносился слой из нихрома Х20Н80 ГОСТ 12766-90 электродом способ нанесения покрытий, патент № 2450087 4 мм толщиной 40-50 мкм. После его нанесения визуально наблюдалось изменение свойств поверхности и появление шероховатости подложки. Результаты определения адгезионной прочности для всех образцов представлены в таблице 1, а зависимость адгезионной прочности от шероховатости (Rz) и марки электрода представлены на фиг.2.

Таким образом, из приведенного выше примера и при реализации заявляемого способа подготовки поверхности основы лучшая адгезионная прочность напыленных газодинамических покрытий на чугунной основе по сравнению с прототипом, установленная по клеевой методике, составляет 44,9 МПа, при применении электроискровой наплавки нихрома Х20Н80 ГОСТ 12766-90 электродом способ нанесения покрытий, патент № 2450087 4 мм на 7-ом энергетическом режиме установки (сила тока 6 А), частота вибрации электрода 250 Гц, время обработки 0,5 мин/см2.

Источники информации

1. Пат. 2306368 Российская Федерация, МПК C23C 24/04 Способ нанесения покрытий [Текст] / Куприянов Г.В.; заявитель и патентообладатель РВАИ (RU). - № 2006114201; заявл. 25.04.2006; опубл. 20.09.2007, Бюл. № 26, - 4 с.: ил.

2. «Восстановление отверстий коренных опор блоков цилиндров двигателей КАМАЗ комбинированным способом» Материалы международной научно-технической конференции, 2001 г. [Текст]: А.В.Котин, П.В.Сенин, А.П.Грузинцев, С.Б.Сысуев, С.С.Кисняшкин - Саранск: Мордовский гос. университет, 2001. С.28-31 - Библиогр.: с.452.

3. Каширин А.И. Технология газодинамического нанесения металлических покрытий [Текст] / А.И.Каширин, Т.В.Буздыгар, А.В.Шкодкин // Сварщик. - 2003. - № 6. С.23-25.

Таблица 1
Результаты определения адгезионной прочности газодинамических покрытий при применении предложенного способа подготовки поверхности основы
№ п/пТолщина напыленного слоя, мкм Материал эл-да, размер, мм Энергетический режим установки Рабочий ток, А Шероховатость нанесенного слоя, Rz Толщина нанесенного слоя, мкм Адгезионная прочность, МПа
Прото-

тип
200-400нет нет нетнет нет6,4
1 200-400Cu, 8*4 2 212 5-1013,9
2 200-400Cu, 8*4 4 435 15-2519,9
3 200-400Cu, 8*4 7 650 15-2528,3
4 200-400Cu, 8*4 9 8,568 45-5520,1
5 200-400Al 11, способ нанесения покрытий, патент № 2450087 42 211 5-1015,3
6 200-400Al 11, способ нанесения покрытий, патент № 2450087 44 433 15-2518,9
7 200-400Al 11, способ нанесения покрытий, патент № 2450087 47 645 45-5523,9
8 200-400Al 11, способ нанесения покрытий, патент № 2450087 49 8,570 75-8519,2
9 200-400БрОС 9-4, 4*32 211 5-1016,9
10 200-400БрОС 9-4, 4*34 433 0,1528,1
11 200-400БрОС 9-4, 4*37 649 25-3533,8
12 200-400БрОС 9-4, 4*39 8,569 55-6526,5
13 200-400Х20Н80 способ нанесения покрытий, патент № 2450087 42 210 5-1025,3
14 200-400Х20Н80 способ нанесения покрытий, патент № 2450087 44 432 15-2536,8
15 200-400Х20Н80 способ нанесения покрытий, патент № 2450087 47 653 45-5544,9
16 200-400Х20Н80 способ нанесения покрытий, патент № 2450087 49 8,573 65-7538,7

Класс C23C24/04 осаждение частиц за счет удара или кинетической энергии

способ нанесения покрытия -  патент 2526342 (20.08.2014)
способ получения магнитотвердого покрытия из сплава самария с кобальтом -  патент 2524033 (27.07.2014)
способ нанесения теплозащитного износостойкого покрытия на детали из чугуна и стали -  патент 2521780 (10.07.2014)
способ получения медного покрытия на керамической поверхности газодинамическим напылением -  патент 2506345 (10.02.2014)
устройство газодинамического нанесения покрытий на внешние цилиндрические поверхности изделий -  патент 2505622 (27.01.2014)
устройство газодинамического нанесения покрытий на внутреннюю цилиндрическую поверхность изделий -  патент 2503745 (10.01.2014)
конструктивный элемент с каталитической поверхностью, способ его изготовления и применение этого конструктивного элемента -  патент 2490063 (20.08.2013)
способ напыления покрытия на изделие из натурального камня или из металлического материала и устройство для его осуществления -  патент 2489519 (10.08.2013)
способ нанесения покрытия на металлическую основу -  патент 2487191 (10.07.2013)
способ нанесения покрытий -  патент 2485213 (20.06.2013)

Класс B23H9/00 Обработка специальных металлических объектов или для получения специального эффекта или результата на металлических объектах

технологическая оснастка для локальной электроискровой обработки внутренних поверхностей тел вращения -  патент 2527108 (27.08.2014)
способ электроэрозионного легирования поверхностей стальных деталей -  патент 2524471 (27.07.2014)
способ восстановления и упрочнения стальных рабочих лопаток влажнопаровых ступеней паровой турбины -  патент 2518036 (10.06.2014)
сотовое уплотнение и способ его изготовления -  патент 2515869 (20.05.2014)
способ локального удаления диэлектрических покрытий -  патент 2515604 (20.05.2014)
устройство для электрохимической маркировки внутренней поверхности ствола оружия -  патент 2514763 (10.05.2014)
способ электрохимической обработки лопаток с двумя хвостовиками газотурбинного двигателя и устройство для его осуществления -  патент 2514236 (27.04.2014)
способ восстановления высевающего диска для пневматического высевающего аппарата -  патент 2510318 (27.03.2014)
способ электроэрозионной обработки прецизионных сферических поверхностей -  патент 2507042 (20.02.2014)
устройство для электрохимического удаления заусенцев -  патент 2504461 (20.01.2014)
Наверх