способ приготовления композиции для пропитки углеродного волокна

Классы МПК:C08J5/04 армирование высокомолекулярных соединений сыпучим или связанным волокнистым материалом
D01F11/14 обработка органическими соединениями, например высокомолекулярными соединениями
D01F11/12 обработка неорганическими веществами
B82B1/00 Наноструктуры
D01F11/10 из углерода
C01B31/02 получение углерода
Автор(ы):, ,
Патентообладатель(и):Открытое акционерное общество "Государственный ракетный центр имени академика В.П. Макеева" (RU)
Приоритеты:
подача заявки:
2010-08-16
публикация патента:

Изобретение относится к технологии получения объемно-армированных углерод-углеродных композиционных материалов, в частности к приготовлению композиций для пропитки углеродных волокон, и может быть использовано при производстве эррозионно-стойких теплозащитных деталей в авиационной, ракетно-космической и химической отраслях промышленности. Способ включает растворение 15-20 вес.ч. поливинилового спирта в водной суспензии углеродного фуллероидного наномодификатора в количестве 0,01-1,0 вес.ч. на 100 вес.ч. воды. Изобретение обеспечивает повышение адгезионной прочности углеродных стержней к углеродной матрице в углерод-углеродном композиционном материале. 1 ил., 1 табл., 13 пр.

способ приготовления композиции для пропитки углеродного волокна, патент № 2451037

Формула изобретения

Способ приготовления композиции для пропитки углеродных волокон, основанный на получении водного раствора поливинилового спирта определенной концентрации, отличающийся тем, что растворение поливинилового спирта производят в водной суспензии углеродного фуллероидного наномодификатора при следующем соотношении компонентов, вес.ч.:

Вода100
Поливиниловый спирт 15-20
Углеродный фуллероидный наномодификатор 0,01-1,0

Описание изобретения к патенту

Изобретение относится к технологии создания объемно-армированных углерод-углеродных композиционных материалов (УУКМ) и может быть использовано при производстве эррозионно-стойких теплозащитных деталей в авиационной, ракетно-космической и химической отраслях промышленности.

Технология производства УУКМ включает следующие основные процессы:

- изготовление углепластиковых стержней;

- сборка из них армирующего объемного каркаса;

- пропитка каркаса связующим;

- карбонизация и графитизация при повышенной температуре.

Технологический процесс изготовления углепластиковых стержней состоит из следующих операций:

- пропитка углеродного волокна жидкой композицией на основе термореактивных или термопластичных материалов;

- протягивание пропитанного углеродного волокна через систему фильер, где происходит уплотнение и ориентация волокна;

- термообработка пропитанного волокна для полимеризации термореактивной композиции или удаления растворителя из термопластичной композиции.

Известен способ приготовления композиции для пропитки углеродного жгута, состоящей из фенольно-формальдегидной смолы резольного типа и поливинилбутираля в спиртово-ацетоновой смеси (заявка № 2007139204 с приоритетом 24.10.2007).

Недостаток этой композиции в том, что при формировании УУКМ она образует на поверхности углеродного стержня неграфитизирующуюся рыхлую карбонизованную структуру с системой закрытых пор, что ведет к снижению основных функциональных характеристик УУКМ.

Известен способ приготовления композиция для пропитки углеродного волокна на основе поливинилового спирта, используемой для изготовления УУКМ по способу, описанному в патенте № 2090497 с приоритетом 20.02.1995 г. Данный способ основан на растворении поливинилового спирта в воде в пропорции 1:2.

Высокая концентрация поливинилового спирта в растворе приводит к неравномерной пропитке углеродных жгутов, имеющих крутку, и к необходимости частой чистке фильер от остатков быстроотверждающегося поливинилового спирта.

Наиболее близким к заявляемому изобретению, принятым за прототип, является способ приготовления композиции посредством растворения поливинилового спирта в воде с образованием 15-20%-ного раствора (Щурик А.Г. Искусственные углеродные материалы. / Пермь, 2009, с.178-179).

Композиция, приготовленная по данному способу, хорошо смачивает углеродное волокно, обеспечивая необходимую для сборки каркасов жесткость углепластиковых стержней, и образует графитизирующийся коксовый слой на поверхности углеродных стержней при формировании УУКМ.

Недостаток этого способа в том, что он не обеспечивает высокую адгезионную прочность соединения углеродных стержней с углеродной матрицей в УУКМ. Как показывают исследования физико-механических характеристик УУКМ, наиболее слабым звеном является прочность именно этого соединения. Разрушение при сдвиге происходит на поверхности раздела «матрица-углеродный стержень», т.е. носит адгезионный характер.

Технической задачей предлагаемого изобретения является повышение адгезионной прочности соединения углеродных стержней с углеродной матрицей в углерод-углеродном композиционном материале.

Поставленная задача решается тем, что растворение поливинилового спирта производят в водной суспензии углеродного фуллероидного наномодификатора при следующем соотношении компонентов, вес.ч.:

Вода100
Поливиниловый спирт 15-20
Углеродный фуллероидный наномодификатор 0,01-1,0

Введение в пропитывающую композицию фуллероидных наночастиц позволяет модифицировать межфазную границу «стержень-матрица» благодаря возникновению сил Ван-дер-Ваальса между мезоструктурой матрицы и волокна, тем самым создавая возможность перехода характера разрушения при сдвиге материала из области адгезионной в область когезионную.

Нижний предел концентрации фуллероидного наномодификатора в композиции - это минимальное содержание наночастиц, при котором наблюдается повышение адгезионной прочности в системе «матрица-стержень». Верхний предел ограничен реологическими свойствами композиции: повышение вязкости с увеличением содержания наночастиц ухудшает качество пропитки волокна.

Для приготовления композиции использовали следующие материалы:

1. Дистиллированная вода.

2. Поливиниловый спирт ГОСТ 10779

3. Углеродный фуллероидный наномодификатор ТУ 2166-001-13800624-2003.

Приготовление композиции осуществляли в следующем порядке.

1. Приготовление водной суспензии углеродного фуллероидного модификатора

Необходимое количество наномодификатора диспергировали в дистиллированной воде и полученную взвесь подвергали ультразвуковой обработке с использованием ультразвукового диспергатоа УЗГ-01.20 (частота 20 кГц, продолжительность 20 минут).

Срок хранения приготовленной суспензии не более 10 суток.

2. Растворение поливинилового спирта в водной суспензии

Необходимое количество поливинилового спирта вводили в суспензию, нагревали до температуры 50-60°C и перемешивали механическим смесителем в течение 30-40 минут.

Срок хранения готовой композиции не более 15 суток в герметично закрытой таре.

Для исследования адгезионной прочности соединения углеродных стержней и углеродной матрицы по описанной выше технологии были приготовлены различные составы предлагаемой композиции, примеры которых представлены в Таблице. Эти составы композиции использовались для изготовления углепластиковых стержней на специальном оборудовании, представляющем собой систему последовательно установленных устройств: шпулярник, откуда углеродные нити, проходя через ванну с предлагаемой композицией, протягивают через каскад фильер, где происходит отжим излишков композиции и формообразование жгута; далее сформированный жгут поступает в туннельную камеру нагрева, где при температуре 90-110°C происходит удаление воды из композиции и отверждение поливинилового спирта, и формируется углепластиковый стержень.

Изготовленные таким образом с использованием углеродного волокна ВМН-4 (ТУ 48-20-122-84) стержни диаметром 1,15 мм подвергали испытаниям, как показано на Фиг.1.

Стержни 1 помещали в металлические капсулы 2, содержащие фенолформальдегидное связующее ЛБС-4 (ГОСТ 901) 3.

Далее связующее ЛБС-4 в капсулах вместе со стержнями отверждали при температуре 160°C в течение 3 часов в сушильном шкафу и карбонизовали в муфельной печи при температуре 900-1000°C в течение 2 часов до получения кокса 4.

Полученные таким образом образцы помещались в разрывную машину, где капсула крепилась к основанию, а к стержню в захватах 5 прикладывалась растягивающая нагрузка F, что при определенных ее значениях приводило к вырыванию стержня из матрицы. Адгезионная прочность рассчитывалась как отношение величины разрушающей силы к площади поверхности контакта стержня с матрицей.

Полученные результаты представлены в Таблице. Сравнение этих результатов показывает, что предлагаемое техническое решение позволяет повысить адгезионную прочность соединения углеродных стержней и углеродной матрицы в УУКМ более, чем на 50%.

Примеры исследуемых составов композиции для пропитки углеродного волокна и значения адгезионной прочности углеродного стержня к углеродной матрице
Наименование компонентов и характеристик покрытия Номера примеров
12 34 56 78 910 1112 Прототип
Вода, вес.ч.100 100 100100 100100 100100 100100 100100 100
Поливиниловый спирт, вес.ч.20 20 2020 1515 1515 1818 1818 20
Углеродный фуллероидный наномодификатор, вес.ч. 0,010,1 0,51,0 0,010,1 0,51,0 0,010,1 0,51,0 0
Адгезионная прочность, МПа26,8 27,8 30,932,3 27,028,0 31,032.5 26,927,7 30,832,4 21,3

Класс C08J5/04 армирование высокомолекулярных соединений сыпучим или связанным волокнистым материалом

способ получения препрега для композиционных материалов -  патент 2516526 (20.05.2014)
обработанный полимочевиноуретаном шнур для приводного ремня и ремень -  патент 2515321 (10.05.2014)
композиция смолы с цепным механизмом отверждения и армированный волокнами композиционный материал -  патент 2511450 (10.04.2014)
полимерное связующее и препрег на его основе -  патент 2510408 (27.03.2014)
способ получения полимерной композиции для труб -  патент 2509786 (20.03.2014)
арматура композитная -  патент 2509653 (20.03.2014)
способ получения полимерного пресс-материала -  патент 2508299 (27.02.2014)
способ получения композиционных материалов на полимерной основе, армированных углеродными волокнами -  патент 2500697 (10.12.2013)
полимерное связующее для композитной арматуры -  патент 2495892 (20.10.2013)
термореактивные полисахариды -  патент 2488606 (27.07.2013)

Класс D01F11/14 обработка органическими соединениями, например высокомолекулярными соединениями

Класс D01F11/12 обработка неорганическими веществами

Класс B82B1/00 Наноструктуры

многослойный нетканый материал с полиамидными нановолокнами -  патент 2529829 (27.09.2014)
материал заменителя костной ткани -  патент 2529802 (27.09.2014)
нанокомпозитный материал с сегнетоэлектрическими характеристиками -  патент 2529682 (27.09.2014)
катализатор циклизации нормальных углеводородов и способ его получения (варианты) -  патент 2529680 (27.09.2014)
способ определения направления перемещения движущихся объектов от взаимодействия поверхностно-активного вещества со слоем жидкости над дисперсным материалом -  патент 2529657 (27.09.2014)
способ формирования наноразмерных структур -  патент 2529458 (27.09.2014)
способ бесконтактного определения усиления локального электростатического поля и работы выхода в нано или микроструктурных эмиттерах -  патент 2529452 (27.09.2014)
способ изготовления стекловидной композиции -  патент 2529443 (27.09.2014)
комбинированный регенеративный теплообменник -  патент 2529285 (27.09.2014)
способ изготовления тонкопленочного органического покрытия -  патент 2529216 (27.09.2014)

Класс D01F11/10 из углерода

способ нанесения теплозащитного электропроводящего покрытия на углеродные волокна и ткани -  патент 2511146 (10.04.2014)
способ стабилизации углеродсодержащего волокна и способ получения углеродного волокна -  патент 2416682 (20.04.2011)
способ изготовления детали из термостойкого композитного материала, способ изготовления волокнистой конструкции, волокнистая конструкция, изготовленная данным способом, и композитный материал, содержащий данную конструкцию -  патент 2324597 (20.05.2008)
высокотемпературная стабилизация пековых волокон при низкой концентрации окислителя -  патент 2198969 (20.02.2003)
когезионный пучок из дробленного натяжением непрерывного волокна, способ изготовления когезионного пучка и композиционный материал на его основе -  патент 2061805 (10.06.1996)
способ модификации поверхности углеволокнистых материалов -  патент 2052549 (20.01.1996)

Класс C01B31/02 получение углерода

электродная масса для самообжигающихся электродов ферросплавных печей -  патент 2529235 (27.09.2014)
способ модифицирования углеродных нанотрубок -  патент 2528985 (20.09.2014)
свч плазменный конвертор -  патент 2522636 (20.07.2014)
пористые угреродные композиционные материалы и способ их получения, а также адсорбенты, косметические средства, средства очистки и композиционные фотокаталитические материалы, содержащие их -  патент 2521384 (27.06.2014)
полимерный нанокомпозит с управляемой анизотропией углеродных нанотрубок и способ его получения -  патент 2520435 (27.06.2014)
способ получения углерод-металлического материала каталитическим пиролизом этанола -  патент 2516548 (20.05.2014)
способ получения углеродных наноматериалов с нанесённым диоксидом кремния -  патент 2516409 (20.05.2014)
тонкодисперсная органическая суспензия углеродных металлсодержащих наноструктур и способ ее изготовления -  патент 2515858 (20.05.2014)
способ получения сажи, содержащей фуллерены и нанотрубки, и устройство для его осуществления -  патент 2511384 (10.04.2014)
способ заполнения внутренней полости нанотрубок химическим веществом -  патент 2511218 (10.04.2014)
Наверх