электроподстанция электрофизической установки
Классы МПК: | H01F29/00 Регулировочные трансформаторы или переменные индуктивности, не отнесенные к группе 21/00 |
Автор(ы): | Назаренко Максим Анатольевич (RU), Кустова Наталья Анатольевна (RU), Лебедин Андрей Анатольевич (RU), Семин Николай Викторович (RU), Лебедин Анатолий Андреевич (RU) |
Патентообладатель(и): | Лебедин Андрей Анатольевич (RU) |
Приоритеты: |
подача заявки:
2010-07-09 публикация патента:
20.05.2012 |
Использование: в области электротехники. Технический результат заключается в повышении надежности и снижении потерь гелия. При посадках в питающей линии 1 датчик посадок 11 через пороговый элемент 12 переводит выпрямитель 8 в режим шунтирования тока электромагнитов 9. В таком режиме выпрямитель не потребляет активной и реактивной мощности, что стабилизирует напряжение на шинах 3 подстанции и электродвигателе 5 гелиевого турбонасоса 6, входящего в систему 13 охлаждения. 1 ил.
Формула изобретения
Электроподстанция физической установки, содержащая присоединенные к ее шинам электропривод гелиевого насоса и управляемый выпрямитель питания электромагнитов, датчик напряжения, выходом подключенный к пороговому элементу, отличающаяся тем, что управляемый выпрямитель оборудован входом перевода его в режим шунтирования и этот вход соединен с выходом порогового элемента.
Описание изобретения к патенту
Изобретение относится к области электротехники и может использоваться в энергетике мощных физических установок.
Наиболее близким по технической сути и достигаемым результатам является электроподстанция [1] электрофизической установки, содержащая фидеры питания гелиевых насосов и регулируемых выпрямителей питания электромагнитов. Недостаток устройства проявляется в режимах посадки напряжения подводящей линии. Посадки напряжения, даже кратковременные, приводят к сбоям в работе гелиевых турбонасосов, служащих для охлаждения сверхпроводящих магнитов. При этом возникают значительные потери дорогостоящего гелия и, как следствие, сбои в работе установки.
Целью изобретения является повышение надежности и снижение потерь гелия.
Поставленная цель достигается за счет того, что электроподстанция снабжена датчиком напряжения питающей линии, выход которого через пороговый элемент подключен к управляющим входам выпрямителей. Именно указанные особенности электроподстанции обеспечивают достижения решения технической задачи.
На фиг.1 представлена схема электроподстанции.
К линии 1 подключен понижающий трансформатор 2, обмотка низкого напряжения которого соединена с шинами 3 подстанции. К последней через фидер (выключатель) 4 подключен асинхронный электродвигатель 5 насосов 6, а через фидер 7 - выпрямитель 8, к выходу которого подключена обмотка 9 электромагнита. Через трансформатор 10 напряжения с линией связан датчик 11 напряжения. Выход последнего через пороговый элемент 12 соединен с управляющим входом выпрямителя 8. Турбинный насос 6 входит в систему 13 охлаждения магнитов.
Электроподстанция работает следующим образом. Через линию 1 и трансформатор 2 на шины 3 поступает напряжение, которое через фидеры 4 и 7 подается соответственно на электродвигатель 5 и выпрямитель 8. Двигатель 5 приводит во вращение турбинный насос 6, который обеспечивает циркуляцию гелия в системе охлаждения 13. Выпрямитель 8 работает в выпрямительном режиме с напряжением 70-90% от максимального, обеспечивая протекание тока в электромагнитах 9 фокусировки пучка частиц. Двигатель 5 и выпрямитель 8 наряду с активной потребляют и реактивную мощность. При небольших отклонениях (2-8%) напряжения на линии сигнал на выходе датчика 11 незначительно изменяется и это изменение не превышает порога чувствительности порогового элемента 12. Такие колебания неопасны для работы насоса 5 и поэтому на работу подстанции не влияют. Большие посадки напряжения возникают из-за грозы или удаленных коротких замыканиях в энергосистеме. В год их может быть несколько десятков. При этом сигнал на выходе датчика 11 значительно снижается и на выходе порогового элемента 12 появляется сигнал. По этому сигналу выпрямитель 8 переводится в режим шунтирования. В таком режиме ток электромагнита 9 замыкается через выпрямитель 8, минуя сеть. Выпрямитель 8 выполнен по мостовой схеме. Как известно, для перевода выпрямительного моста в режим шунтирования необходимо снять импульсы управления со всех шести тиристоров, входящих в состав моста, а на два тиристора, присоединенных к одной фазе, подать управляющие импульсы. При этом выпрямитель 8 не потребляет из сети тока, а следовательно, реактивной и активной мощности, что облегчает режим работы шин 3, снижая общее потребление. Как известно, величина напряжения на шинах зависит от э.д.с. сети и в значительной степени от перетоков реактивной составляющей тока. Снижение последней ведет к повышению напряжения на шинах 3 подстанции, а следовательно, повышает устойчивость асинхронного двигателя 5. Мощность выпрямителя 8 в несколько раз превышает мощность двигателя 5. Поэтому и обеспечивается снижение посадки напряжения. В результате перебоев в работе насоса 6 не возникает. Время посадок напряжения вследствие удаленных коротких замыканий на линиях определяется временем срабатывания защиты и оценивается в 0,1-0,2 секунды.
Собственная постоянная времени электромагнита 9 составляет несколько секунд и более. Поэтому в режиме шунтирования ток в нем снизится незначительно (менее 1%).
Источник информации
1. Меньшов Б.Г. и др. Электрооборудование нефтяной промышленности. - М.: Недра, 1990, стр.200, рис.7.6
Класс H01F29/00 Регулировочные трансформаторы или переменные индуктивности, не отнесенные к группе 21/00