способ переработки химического концентрата природного урана
Классы МПК: | C22B60/02 получение тория, урана или других актиноидов C22B3/06 в неорганических кислых растворах C22B3/20 обработка или очистка растворов, например, полученных выщелачиванием |
Автор(ы): | Шевелёв Андрей Михайлович (RU), Круглов Сергей Николаевич (RU), Михайлов Владимир Анатольевич (RU), Соковиков Сергей Александрович (RU), Шамин Виктор Иванович (RU) |
Патентообладатель(и): | Открытое акционерное общество "Сибирский химический комбинат" (RU) |
Приоритеты: |
подача заявки:
2010-11-01 публикация патента:
27.05.2012 |
Изобретение относится к способу переработки химического концентрата природного урана. Способ включает выщелачивание концентрата раствором азотной кислоты с получением суспензии, введение в суспензию коагулянта, разделение суспензии. Затем ведут отделение осветленного раствора от остатка и направляют раствор на экстракцию. При этом в полученную суспензию вводят анионный коагулянт на основе полиакриламида и на суспензию с коагулянтом воздействуют постоянным магнитным полем. Концентрацию коагулянта и продолжительность воздействия магнитным полем выбирают из условия обеспечения в осветленном растворе концентрации нерастворимых остатков не более 100 мг/л. Техническим результатом изобретения явяляется получение раствора, пригодного для последующей экстракции. При экстракции из осветленного раствора не наблюдалось образования нерасслаивающихся эмульсий. 2 з.п. ф-лы, 2 табл.
Формула изобретения
1. Способ переработки химического концентрата природного урана, включающий выщелачивание раствором азотной кислоты с получением суспензии, введение в суспензию коагулянта, разделение суспензии, отделение осветленного раствора от остатка и направление раствора на экстракцию, отличающийся тем, что в суспензию вводят анионный коагулянт на основе полиакриламида и на суспензию с коагулянтом воздействуют постоянным магнитным полем, при этом концентрацию коагулянта и продолжительность воздействия магнитным полем выбирают из условия обеспечения в осветленном растворе концентрации нерастворимых остатков не более 100 мг/л.
2. Способ по п.1, отличающийся тем, что коагулянт, представляющий собой анионный сополимер акриламида и акрилата натрия с молекулярной массой 12·106 , вводят в суспензию до концентрации 20-100 мг/л.
3. Способ по п.1, отличающийся тем, что в суспензии создают магнитное поле напряженностью не менее 730 кА/м.
Описание изобретения к патенту
Изобретение относится к способам переработки химических концентратов природного урана, которые включают в себя отделение нерастворимых остатков от растворов уранилнитрата (разделение суспензий) и экстракционный аффинаж с использованием трибутилфосфата (ТБФ) в углеводородном разбавителе.
При растворении (выщелачивании) химических концентратов природного урана (ХКПУ) в образующихся растворах уранилнитрата присутствуют нерастворимые остатки (НО), в состав которых входят гидратированные оксиды железа, алюминия и других металлов. В процессе экстракционного аффинажа уранилнитрата НО способствуют образованию нерасслаивающихся эмульсий (медуз) водной фазы с экстрагентом - 30%-ным ТБФ в углеводородном разбавителе, что приводит к нарушению процесса экстракции.
Если экстракционное производство ориентировано на переработку растворов, не содержащих твердой фазы, то нерастворимые остатки следует удалить из растворов. Однако зачастую при выщелачивании ХКПУ образуются суспензии, в которых нерастворимые остатки образуют труднофильтруемые взвеси, такие суспензии трудно разделить на осветленный раствор и остаток.
В способе переработки концентратов оксидов природного урана (Патент РФ № 2323883, МПК С01G 43/01(2006/01), опубл. 10.05.2008) нерастворимые остатки отделяют от раствора урана фильтрацией или центрифугированием после проведения выщелачивания в несколько стадий, включающих приготовление концентрированного раствора урана ( 700 г/л) и разбавление его в горячем виде (что довольно небезопасно) слабым раствором азотной кислоты.
Известен способ переработки ХКПУ выщелачиванием раствором азотной кислоты и разделением полученной суспензии на твердую и жидкую составляющие [Козырев А.С., Шикеруи Т.Г., Рябов А.С., Шамин, В.И., Михайлова, Н.А., Скуратова М.В. Интенсификация процессов разделения высококонцентрированных растворов уранила и тонкодисперсных твердых взвесей. Известия Томского политехнического университета. - 2007. - Т.311. - № 3. - С.16-19]. Способ включает введение в азотнокислый раствор уранилнитрата с концентрацией урана 300-450 г/л и азотной кислоты 0,7-3,0 моль/л коагулянта катионного типа марки FLOQULAT FL 45 С в количестве 100-200 мг/л. Затем в суспензию вводят катионный флокулянт марки FO 4140 в количестве 1-10 мг/л. После введения коагулянта и флокулянта нерастворимые остатки отделяли от растворов фильтрацией, получали прозрачные растворы уранилнитрата, пригодные для экстракционного процесса. Способ выбран за прототип.
Были продолжены исследования по подбору коагулянтов и применению других методов разделения суспензий, полученных выщелачиванием ХКПУ. Как показали исследования, содержание взвесей НО в растворе уранилнитрата не должно превышать 100 мг/л - максимальное содержание, при котором на стадии экстракции не наблюдается образования нерасслаивающихся эмульсий.
Задачей изобретения является обеспечение отделения раствора уранилнитрата от нерастворимого остатка ХКПУ с получением раствора, пригодного для экстракции.
Поставленную задачу решают тем, что в способе переработки химического концентрата природного урана, включающем выщелачивание раствором азотной кислоты с получением суспензии, введение в суспензию коагулянта, разделение суспензии, отделение осветленного раствора от остатка и направление раствора на экстракцию, в суспензию вводят анионный коагулянт на основе полиакриламида и на суспензию с коагулянтом воздействуют постоянным магнитным полем, при этом концентрацию коагулянта и продолжительность воздействия магнитным полем выбирают из условия обеспечения в осветленном растворе концентрации нерастворимых остатков не более 100 мг/л.
Коагулянт, представляющий собой анионный сополимер акриламида и акрилата натрия с молекулярной массой 12·106 , вводят в суспензию до концентрации 20-100 мг/л.
В суспензии создают постоянное магнитное поле с напряженностью не менее 730 кА/м.
Способ осуществляют следующим образом.
В способе использовали анионный коагулянт на основе полиакриламида - коагулянт (флокулянт) FLOPAM марки AN 923 PWG, представляющий собой анионный сополимер акриламида и акрилата натрия с молекулярной массой 12·106 .
Суспензия, полученная от растворения ХКПУ в растворе азотной кислоты, содержит НО - соединения железа, алюминия и других металлов. В суспензию вводят анионный коагулянт в заданном количестве и воздействуют на суспензию с коагулянтом постоянным магнитным полем. Неионные и катионные коагулянты оказались неэффективными (увеличения эффективности от совмещения действий коагулянта и магнита не произошло).
Перерабатывали ХКПУ с повышенным содержанием железа и алюминия, близким к предельным значениям, приведенным в ASTM C 967-02 на концентрат урановой руды. Исходные суспензии уранилнитрата готовились растворением ХКПУ в растворе азотной кислоты. Концентрация уранилнитрата в полученных суспензиях в пересчете на уран находилась в интервале (203,1-205,7) г/л, концентрация свободной азотной кислоты в интервале (104,1-112,5) г/л, железа 30-33 г/л, алюминия 15-16 г/л. HO составляли около 0,5% от объема раствора.
Были проведены две серии экспериментов:
- в первой серии исследовано влияние на осветление суспензии коагулянта и магнита и продолжительности их воздействия на суспензию;
- во второй серии подобрана оптимальная концентрация коагулянта.
Провели первую серию из 4 опытов.
В опыте 1 исследовали разделение суспензии в процессе ее отстоя. Сразу после завершения растворения ХКПУ полученную суспензию разделили на шесть равных порций объемом 50 мл каждая. Затем сразу после разделения (т.е. без выдержки суспензии) и через заданные интервалы времени (5, 10, 15, 20 и 25 минут выдержки) из каждого стакана отбирали сверху 25 мл суспензии, пробу перемешивали и измеряли оптическую плотность пробы на фотоэлектроколориметре.
В опыте 2 исследовали разделение суспензии после введения в нее коагулянта. В полученную от растворения ХКПУ суспензию, разделенную на шесть порций, добавили коагулянт анионного типа марки AN-923 до его концентрации в суспензии 40 мг/л. Далее провели замер оптической плотности шести проб полученной пульпы сразу после введения коагулянта и через заданные интервалы времени (5, 10, 15, 20 и 25 минут), отбирая из каждого стакана сверху 25 мл суспензии, перемешивая ее и измеряя оптическую плотность пробы на фотоэлектроколориметре.
В опыте 3 исследовали разделение суспензии при воздействии на нее постоянного магнита. На шесть порций суспензии воздействовали постоянными высокоэнергетическими магнитами Nd-Fe-B, создающими магнитное поле в суспензии не менее 730 кА/м (магниты были установлены под дном стеклянных стаканов, в которых находились порции суспензии). Через заданные интервалы времени (5, 10, 15, 20 и 25 минут) из каждого стакана сверху отбирали пробы суспензии и замеряли их оптическую плотность.
В опыте 4 исследовали разделение суспензии при введении в нее коагулянта и воздействии постоянного магнита. Для этого в шесть порций суспензии ввели коагулянт анионного типа марки AN-923 до его концентрации в суспензии 40 мг/л и затем провели операции, как в опыте 3.
В таблице 1 приведены результаты измерения оптической плотности проб, характеризующей степень осветления суспензии, в зависимости от времени воздействия коагулянта и магнита на суспензию (от продолжительности выдержки суспензии до измерений).
Таблица 1 | |||||
Номер пробы | Продолжительность выдержки суспензии, мин | Оптическая плотность проб | |||
Опыт 1 | Опыт 2 | Опыт 3 | Опыт 4 | ||
1 | 0 | 0,87 | 0,86 | 0,89 | 0,87 |
2 | 5 | 0,85 | 0,83 | 0,71 | 0,49 |
3 | 10 | 0,83 | 0,70 | 0,56 | 0,22 |
4 | 15 | 0,80 | 0,59 | 0,43 | 0,15 |
5 | 20 | 0,74 | 0,48 | 0,34 | 0,13 |
6 | 25 | 0,72 | 0,35 | 0,28 | 0,11 |
Как видно из таблицы 1, при воздействии на суспензию коагулянта и магнита в зависимости от времени воздействия осветление суспензии происходит в 2-4 раза более эффективно по сравнению с воздействием только одного коагулянта и в 1,5-3 раза по сравнению с воздействием только одного магнита.
Во второй серии опытов после завершения растворения ХКПУ полученную суспензию разделили на несколько равных порций, в которые коагулянт вводили до концентраций соответственно 20, 40, 60, 100, 200, 500 мг/л. На все порции воздействовали магнитом, как в опытах 3 и 4 первой серии.
Результаты опытов второй серии приведены в таблице 2.
Концентрации нерастворимого остатка 100 мг/л соответствует оптическая плотность осветленного раствора 0,18.
Как видно из таблицы 2, заданное осветление суспензии (оптическая плотность 0,18, соответствующая приемлемой для экстракции концентрации НО, равной 100 мг/л) при введении в суспензию коагулянта и воздействии на суспензию постоянного магнита Nd-Fe-B, создающего магнитное поле напряженностью 730 кА/м, наступает при концентрации коагулянта 20 мг/л и времени воздействия 25 мин. Увеличение концентрации коагулянта до 100 мг/л сокращает продолжительность осветления суспензии до заданной величины до 7,5 минут. Дальнейшее увеличение концентрации коагулянта в суспензии не приводит к существенному ускорению осветления суспензии.
После того, как произошло разделение суспензии на осветленный раствор и остаток, остаток отделили от раствора фильтрацией. Раствор направили на экстракцию. При экстракции не наблюдалось образования нерасслаивающихся эмульсий.
Класс C22B60/02 получение тория, урана или других актиноидов
Класс C22B3/06 в неорганических кислых растворах
Класс C22B3/20 обработка или очистка растворов, например, полученных выщелачиванием