способ тепловой защиты головной части летательного аппарата

Классы МПК:B64G1/38 с демпфированием колебаний, например демпферы нутации
B64G1/58 тепловая защита, например тепловые экраны
Автор(ы):, ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования Томский государственный университет (ТГУ) (RU)
Приоритеты:
подача заявки:
2010-11-09
публикация патента:

Изобретение относится к авиационной и космической технике и касается способа охлаждения головных элементов конструкций летательных аппаратов. Способ тепловой защиты головной части летательного аппарата заключается в выполнении следующих операций: в область взаимодействия головной части с обтекающим потоком через перфорированные отверстия подают газ-охладитель и подавляют турбулентные вихри, возникающие в высокоградиентных зонах взаимодействия элементарных струй газа-охладителя и набегающего высокотемпературного газового потока, воздействуя на них периодическими тангенциальными вибрациями интенсивностью I в диапазоне 1,75×105 способ тепловой защиты головной части летательного аппарата, патент № 2452669 Iспособ тепловой защиты головной части летательного аппарата, патент № 2452669 39,2×105 кг·град2 3м2. Тангенциальные вибрации налагают в плоскости, перпендикулярной оси симметрии поверхности головной части летательного аппарата. Частоту вибраций выбирают в диапазоне 5способ тепловой защиты головной части летательного аппарата, патент № 2452669 fспособ тепловой защиты головной части летательного аппарата, патент № 2452669 25 Гц, амплитуду вибраций - в диапазоне 1способ тепловой защиты головной части летательного аппарата, патент № 2452669 Аспособ тепловой защиты головной части летательного аппарата, патент № 2452669 9 угловых градусов. Достигается повышение эффективности охлаждения головной части летательных аппаратов. 2 з.п. ф-лы, 3 ил. способ тепловой защиты головной части летательного аппарата, патент № 2452669

способ тепловой защиты головной части летательного аппарата, патент № 2452669 способ тепловой защиты головной части летательного аппарата, патент № 2452669 способ тепловой защиты головной части летательного аппарата, патент № 2452669

Формула изобретения

1. Способ тепловой защиты головной части летательных аппаратов, включающий подачу газа-охладителя под давлением через круглые отверстия проницаемого участка поверхности головной части навстречу набегающему высокотемпературному газовому потоку, отличающийся тем, что на поверхность головной части в плоскости, перпендикулярной оси симметрии, налагают тангенциальные вибрации интенсивностью I, выбираемой в диапазоне 1,75×105способ тепловой защиты головной части летательного аппарата, патент № 2452669 Iспособ тепловой защиты головной части летательного аппарата, патент № 2452669 39,2×105 кг·град2 3м2.

2. Способ по п.1, отличающийся тем, что частоту тангенциальных вибраций f выбирают в диапазоне 5способ тепловой защиты головной части летательного аппарата, патент № 2452669 fспособ тепловой защиты головной части летательного аппарата, патент № 2452669 25 Гц.

3. Способ по п.1, отличающийся тем, что амплитуду тангенциальных вибраций А выбирают в диапазоне 1способ тепловой защиты головной части летательного аппарата, патент № 2452669 Аспособ тепловой защиты головной части летательного аппарата, патент № 2452669 9 угловых градусов.

Описание изобретения к патенту

Изобретение относится к авиационной и космической технике, а именно к способам охлаждения головных элементов конструкций летательных аппаратов (ЛА). При входе ЛА с гиперзвуковыми скоростями в плотные слои атмосферы его головная часть подвергается интенсивным тепловым нагрузкам. Возрастание скоростей спуска современных ЛА приводит к повышению требований, касающихся тепловой защиты.

Известны гидродинамические методы защиты поверхности ЛА от воздействия высокотемпературных газовых потоков, например метод пористого охлаждения, когда в зону интенсивного нагрева (пограничный слой) вдувают газ-охладитель через поверхность из пористых материалов (1. Рамсей, Голыптейн, Взаимодействие вдуваемой нагретой струи с основным потоком. / Теплопередача. Т.93, № 4, 1971, с.41-50).

Недостаток способа заключается в том, что пористые теплозащитные материалы не выдерживают больших тепловых нагрузок, могут разрушаться.

Известен также способ теплозащиты поверхностей головной части ЛА, когда ее охлаждают с помощью жидкого или газообразного хладагента. Обшивку выполняют перфорированной, а хладагент подводят к внутренней поверхности обшивки и выдувают через перфорацию в пограничный слой. (2. Основы теплопередачи в авиационной и ракетной технике. // Под ред. В.К.Кошкина, М.: Машиностроение, 1975 г.)

Недостаток способа заключается в низких прочностных и температурных характеристиках материала, поскольку сквозная перфорация турбулизирует набегающий поток, что увеличивает скорость нагрева головной части ЛА. В конечном итоге материал защиты разрушается.

Наиболее близким к предлагаемому решению является способ охлаждения с использованием газа-охладителя. Способ основан на вдуве газа в зону воздействия набегающего газового потока (3. Заявка РФ, № 96118303, летательный аппарат, опубл. 20.12.1998). Способ выбран за прототип.

Известный летательный аппарат использует охлаждение, основанное на вдуве газа-охладителя в зону воздействия набегающего потока высокотемпературных газов на головную часть ЛА. Газ-охладитель подают под давлением навстречу высокотемпературному потоку через сквозные отверстия в оболочке ЛА.

Существенным недостатком способа, использованного в прототипе, является высокая степень турбулизации потока в области смешивания горячего и холодного газа, что снижает эффективность охлаждения головной части ЛА. Этот недостаток следует устранить.

В основу настоящего изобретения положена задача повышенной эффективности охлаждения головной части спускаемых ЛА воздействием на поверхность охлаждаемой конструкции периодически повторяющимися во времени вибрационными воздействиями. Поставленная задача решается тем, что, в дополнение к основным признакам способа-прототипа, подавляют турбулентные вихри, возникающие в высокоградиентных зонах взаимодействия элементарных струй газа-охладителя и набегающего высокотемпературного газового потока, воздействуя на них периодическими тангенциальными вибрациями интенсивностью I в диапазоне 1,75способ тепловой защиты головной части летательного аппарата, патент № 2452669 Iспособ тепловой защиты головной части летательного аппарата, патент № 2452669 39,2 кг·град23м2 , налагаемыми в плоскости, перпендикулярной оси симметрии поверхности головной части ЛА. Диапазон I характеризует частоту и амплитуду вибраций защищаемой поверхности. Сущность способа поясняется рисунками (фиг.1, фиг.2, фиг.3).

На фиг.1 показана физическая модель картины течения в окрестности оболочки головной части при вдуве газа-охладителя через круглые отверстия навстречу высокотемпературному набегающему потоку. На фиг.2 показана смена лабораторной установки, реализующей заявленный способ. Высокотемпературный набегающий поток 2 и поток газа-охладителя перпендикулярны оболочке головной части 1, способ тепловой защиты головной части летательного аппарата, патент № 2452669 - скорость вращения вала электродвигателя, f - частота вибраций, d1 и d2 - соответственно диаметр оболочки и диаметр отверстий для вдува газа-охладителя.

На фиг.3 приводится зависимость относительной функции теплообмена способ тепловой защиты головной части летательного аппарата, патент № 2452669 , при вибрациях (кривая а - расход газа-охладителя 0,3·10 -4 кг/с; б - расход газа-охладителя 0,41·10-4 кг/с, в - расход газа-охладителя 0,73·10-4 кг/с), от интенсивности тангенциальных вибраций I. Здесь q+ , q- - плотность тепловых потоков при наличии (+) и отсутствии (-) вибраций.

Цифрами на рисунках обозначены: 1 - оболочка головной части в форме усеченного конуса; 2 - высокотемпературный поток; 3 - газ-охладитель; 4 - застойные области течения; 5 - зоны основных участков элементарных струй; 6 - зоны смыкания элементарных струй; 7 - область смешения подаваемого газа-охладителя и набегающего потока.

Способ реализуется следующим образом.

Защищаемую поверхность подвергают периодическим тангенциальным вибрациям в плоскости, перпендикулярной оси симметрии с некоторой частотой f. При этом газ-охладитель 3 в виде элементарных струй 5, покинув защищаемую стенку, образует область смешения 7 с набегающим потоком 2. Происходит оттеснение набегающего потока и «разбавление» пограничного слоя вблизи поверхности головной части ЛА. Условием оттеснения набегающего потока является раннее смыкание элементарных газовых струй 5. За счет этого перед набегающим потоком создается сплошной непрерывный встречный газовый барьер. Однако наличие застойных областей 4 и удаленность зон смыкания элементарных струй 6 приводят к возникновению гидродинамической неустойчивости, появлению крупномасштабных пульсаций газа. Пульсации выносят газ из набегающего высокотемпературного потока 2 к защищаемой поверхности головной части 1. В итоге теплообмен интенсифицируется. Для того чтобы устранить турбулентные вихри вблизи поверхности и обеспечить условия раннего смыкания элементарных струй 5, достаточно подействовать на поверхность тангенциальными периодическими вибрациями в плоскости, перпендикулярной оси симметрии поверхности с частотой f, меняющейся в диапазоне 5способ тепловой защиты головной части летательного аппарата, патент № 2452669 fспособ тепловой защиты головной части летательного аппарата, патент № 2452669 25 Гц. Возникающая за счет тангенциальной вибрации инерционная сила, действуя на струи, приводит к их более раннему смыканию, высокоградиентные области течения разрушаются, а область смешения становится равномерной, без образования крупномасштабных пульсаций. Теплообмен между набегающим потоком и головной частью ЛА при этом снижается, что повышает эффективность охлаждения.

При частоте вибраций f<5 Гц, ослабление теплообмена не отмечается. При частотах f>25 Гц возможно нарушение эксплуатационных характеристик спускаемых ЛА. Этот признак не исключает возможности подбирать частоту для конкретных конструкций.

Целесообразно учитывать и амплитуду А тангенциальных вибраций, влияющую на эффективность теплообмена. Подробные расчеты [4] показывают, что ослабление теплообмена выполняется при изменении амплитуды А в диапазоне 1°способ тепловой защиты головной части летательного аппарата, патент № 2452669 Аспособ тепловой защиты головной части летательного аппарата, патент № 2452669 9° (громоздкие выкладки опущены). При А<1° ослабление теплообмена не наблюдается. При А>9° возникают нежелательные вибрации, обусловленные резонансными характеристиками устройства.

Пример. Предложенный способ охлаждения проверен на модели оболочки головной части ЛА (фиг.2), выполненной в виде перфорированного усеченного конуса. Тангенциальные вибрации задавались за счет преобразования вращательного движения вала электродвигателя 8 в колебательное движение вокруг оси модели 1 с помощью коромысла 9 и штанги 10. Частота тангенциальных вибраций f и амплитуда А регулируются изменением скорости вращения вала электродвигателя способ тепловой защиты головной части летательного аппарата, патент № 2452669 и длины коромысла 9. Оболочка 1 выполнена из нержавеющей стали (толщина стенки способ тепловой защиты головной части летательного аппарата, патент № 2452669 =1,5·10-3 м). Диаметр затупления, на которое действует набегающий газовый поток 2, был выбран d1 =1,9·l0-2 м, диаметры круглых отверстий 11 для вдува газа-охладителя были выбраны d2=1·l0 -3 м. Высокотемпературный газовый поток 2 моделируется струей плазмотрона ЭДП-104А/50 (не показан). Параметры набегающего потока: температура 3600 К, плотность теплового потока q=(0,02÷6,2)·10 6 Вт/м2, расход G=(0,9÷2,25)·10 -3 кг/с, скорость потока 60 м/с. В качестве газа-охладителя используется воздух с температурой (300÷310) К. Параметры набегающего потока и тепломассообмена определяются по известным методикам с помощью термопар, термоанемометров, пневматическими зондами, ротаметрами. Во всех опытах параметры набегающего потока и вдуваемого газа-охладителя не изменяются во времени. Частота тангенциальных вибраций f выбиралась из диапазона от 5 до 25 Гц.

На фиг.3 приведены результаты испытаний. Здесь способ тепловой защиты головной части летательного аппарата, патент № 2452669 - относительная функция теплообмена, равная способ тепловой защиты головной части летательного аппарата, патент № 2452669 =(q+-q-)/q-, где q +, q- - соответственно плотность тепловых потоков, действующих на модель, при наличии (+) и отсутствии (-) вибраций. На горизонтальной оси координат указаны значения интенсивности вибраций I. Здесь величина I меняется в интервале 1,75·10 5способ тепловой защиты головной части летательного аппарата, патент № 2452669 Iспособ тепловой защиты головной части летательного аппарата, патент № 2452669 39,2·105, размерность I - [кг·град 2 /c3м2] учитывает как амплитуду, так и частоту вибраций [4].

Из полученных результатов по влиянию тангенциальных вибраций на теплообмен отмечено следующее. При относительно небольших расходах газа-охладителя (кривая а) влияние вибраций на теплообмен незначительно. С увеличением расхода газа-охладителя через отверстия модели влияние тангенциальных вибраций на теплообмен проявляется в большей степени (кривые 6, в).

Следует заметить, что при значении I<1,75·10 5 [кг·град23м2] относительная функция теплообмена способ тепловой защиты головной части летательного аппарата, патент № 2452669 способ тепловой защиты головной части летательного аппарата, патент № 2452669 0. В этом случае тепловой поток q высокотемпературных газов практически без помех воздействует на поверхность испытуемой модели. Аналогично, при Iспособ тепловой защиты головной части летательного аппарата, патент № 2452669 39·105 [кг·град2 3м2] значения функции способ тепловой защиты головной части летательного аппарата, патент № 2452669 также начинают уменьшаться. В этом случае возрастающая интенсивность тангенциальных вибраций будет усиливать перемешивание газов в области смешения 7 (фиг.1), что интенсифицирует процесс теплообмена между перемешанными газами с высокой температурой и испытуемой поверхностью. Это приведет к возрастанию плотности теплового потока q, соответственно, температура поверхности будет возрастать.

На графике фиг.3 горизонтальная ось соответствует тепломассообмену без вибраций. Анализ кривых способ тепловой защиты головной части летательного аппарата, патент № 2452669 от I, приведенных на фиг.3, показывает, что наличие тангенциальных вибраций, действующих на модель головной части ЛА, позволяет снизить воздействие теплового потока высокотемпературных газов на модель до 27% по сравнению с теплообменом без вибраций.

Из приведенного примера видно, что заявленный способ тепловой защиты головной части ЛА можно реализовать на практике, что говорит о соответствии изобретения критерию «промышленная применимость». Охлаждение головной части ЛА при сочетании заявленных признаков неочевидно, что говорит о соответствии технического решения критерию «изобретательский уровень». В настоящее время проводятся работы по созданию устройства для реализации способа в натурных условиях.

Источники информации

1. Рамсей, Гольштейн, Взаимодействие вдуваемой нагретой струи с основным потоком. / Теплопередача. Т.93, № 4, 1971, с.41-50.

2. Основы теплопередачи в авиационной и ракетной технике. // Под ред. В.К.Кошкина, М.: Машиностроение, 1975 г.

3. Заявка РФ, № 96118303, 1996 г.

4. Голованов А.Н. Теплообмен осесимметричного затупленного тела в потоке газа при наличии вдува газа-охладителя через круглые отверстия и вибрационных возмущений. // ИФЖ, Т.63, № 2, 1992. С.194-198.

Класс B64G1/38 с демпфированием колебаний, например демпферы нутации

активное устройство амортизации вибраций, испытываемых хрупким элементом движущегося оборудования с автоматическим питанием -  патент 2416551 (20.04.2011)
способ полупассивной трехосной стабилизации динамически симметричного искусственного спутника земли -  патент 2332334 (27.08.2008)
устройство вращения в условиях микрогравитации (варианты) -  патент 2245282 (27.01.2005)
способ полупассивной стабилизации искусственного спутника земли и устройство для его реализации -  патент 2191146 (20.10.2002)
способ управления ориентацией искусственного спутника земли -  патент 2159201 (20.11.2000)
способ стабилизации спутника в заданной ориентации -  патент 2041139 (09.08.1995)

Класс B64G1/58 тепловая защита, например тепловые экраны

устройство крепления теплозащиты к раме двигателя (варианты) -  патент 2520598 (27.06.2014)
терморегулирующий материал, способ его изготовления и способ его крепления к поверхности корпуса космического объекта -  патент 2515826 (20.05.2014)
многофункциональный композиционный материал -  патент 2513328 (20.04.2014)
термостойкая система теплозащиты поверхности гиперзвуковых летательных и возвращаемых космических аппаратов -  патент 2509040 (10.03.2014)
стойкий к прожогу фюзеляж воздушного судна -  патент 2502634 (27.12.2013)
крыло гиперзвукового летательного аппарата в условиях его аэродинамического нагрева -  патент 2495788 (20.10.2013)
терморегулирующий материал -  патент 2493058 (20.09.2013)
терморегулирующий материал -  патент 2493057 (20.09.2013)
способ тепловой защиты головной части летательного аппарата -  патент 2481239 (10.05.2013)
панель звукоизолирующая -  патент 2472649 (20.01.2013)
Наверх