импульсный невзрывной сейсмоисточник
Классы МПК: | G01V1/155 с использованием масс, движущихся возвратно-поступательно |
Автор(ы): | Ивашин Виктор Васильевич (RU), Иванников Николай Александрович (RU), Певчев Владимир Павлович (RU), Узбеков Камиль Харрясович (RU) |
Патентообладатель(и): | Ивашин Виктор Васильевич (RU), Иванников Николай Александрович (RU), Певчев Владимир Павлович (RU), Узбеков Камиль Харрясович (RU) |
Приоритеты: |
подача заявки:
2009-09-07 публикация патента:
20.06.2012 |
Изобретение относится к области геофизики и может быть использовано для создания как продольных, так и поперечных сейсмических волн. Сейсмоисточник содержит жесткое основание-излучатель, автономную систему электропитания, пригруз и магнитно-импульсный двигатель, якорь которого в виде электропроводящей пластины закреплен на верхней поверхности основания, а обмотка возбуждения индуктора помещена в пазу немагнитного и неэлектропроводящего корпуса, с которым скреплен пригруз.
Технический результат: повышение коэффициента передачи механической энергии двигателя в механическую энергию воздействия на грунт. 1 з.п. ф-лы, 3 ил.
Формула изобретения
1. Импульсный невзрывной сейсмоисточник, содержащий жесткое основание-излучатель, пригруз с консолями, концы которых подвижно соединены с основанием с возможностью углового перемещения пригруза относительно основания, импульсный электродвигатель и демпфер, отличающийся тем, что на верхней поверхности основания, выполненного с плоскопараллельными нижней и верхней поверхностями, закреплена пластина из материала высокой электропроводности, на основание оперт корпус из немагнитного диэлектрического материала, в пазу которого на обращенной к пластине и основанию поверхности помещена обмотка возбуждения двигателя, пригруз жестко присоединен к корпусу, а демпфер установлен между пригрузом и основанием.
2. Импульсный невзрывной сейсмоисточник по п.1, отличающийся тем, что основание выполнено с наклоном его верхней поверхности относительно прилегающей к грунту нижней поверхности, на которой выполнены зубья для возможности их погружения в грунт.
Описание изобретения к патенту
Изобретение относится к области сейсморазведки, а, именно к области невзрывных импульсных наземных сейсмоисточников, создающих сейсмические волны деформацией грунта под лежащей на грунте излучающей плитой-антенной.
Известен сейсмоисточник (Теория и практика наземной невзрывной сейсморазведки. Под редакцией д.т.н. Шнеерсона М.Б. М.: Недра, 1988, с.149-151), принятый за аналог. Он содержит расположенные на грунте жесткое основание-излучатель, пригрузочную массу и импульсный электромеханический преобразователь электродинамического типа со схемой электропитания его обмоток возбуждения. Ферромагнитные магнитопроводы якоря и индуктора двигателя расположены коаксиально и выполнены с пазами на обращенных друг к другу цилиндрических поверхностях магнитопроводов. В пазах помещены обмотки возбуждения преобразователя (двигателя), присоединенные к емкостному накопителю системы питания через полупроводниковые приборы. Магнитопровод якоря жестко соединен с основанием, а магнитопровод индуктора - с пригрузом. Между магнитопроводом якоря и пригрузом присоединен демпфер снижения повторных ударов при возврате пригруза с магнитопроводом в исходное положение.
Недостатком аналога является низкое значение коэффициента передачи механической энергии двигателя в энергию импульсного механического воздействия на грунт, что приводит к увеличению веса сейсмоисточника, большой потребляемой им при работе электрической мощности, увеличению стоимости, эксплуатационных расходов и, в конечном итоге, к низкой сейсмической эффективности.
Известен принятый за прототип сейсмоисточник (Патент РФ № 2233000, Б.И. № 20, 2004 г.), содержащий жесткое основание-излучатель, пригруз, демпфер и импульсный двигатель электромагнитного типа с зазором между индуктором и якорем. Якорь опирается на излучающее основание-излучатель через две первые установленные на нем стойки. Магнитопровод индуктора двигателя закреплен на пригрузе и соединен со второй опорой посредством оси с возможностью углового перемещения в вертикальной плоскости в направлении уменьшения воздушного зазора между якорем и индуктором.
Недостатками прототипа являются жесткие удары между магнитопроводами якоря и индуктора в момент выбора зазора, что снижает долговечность и создает звуковые волны, большая масса якоря и основания с опорами, неравномерность создания усилия на основание через расположенные по ее краям стойки, и недостаточная сила, ограничиваемая насыщением магнитопроводов якоря и индуктора. Эти недостатки снижают технические и эксплуатационные показатели сейсмоисточника и его сейсмическую эффективность.
Задачей, на решение которой направлено изобретение, является повышение сейсмической эффективности сейсмоисточника, расширение возможности применения и повышение долговечности работы.
Техническим результатом является снижение массы основания-излучателя, повышение коэффициента передачи механической энергии двигателя в механическую энергию воздействия на грунт за счет повышения отношения массы пригруза к массе основания, и расширение возможностей применения сейсмоисточника.
Упомянутая задача достигается тем, что сейсмоисточник содержит жесткое основание-излучатель, пригруз с консолями, концы которых подвижно соединены с основанием с возможностью относительного углового перемещения пригруза, импульсный электродвигатель и демпфер, на верхней поверхности основания, выполненного с плоскопараллельными верхней и нижней поверхностями, закреплена пластина из материала высокой электропроводности, на основание оперт корпус из немагнитного диэлектрического материала, в пазу которого на обращенной к пластине и основанию поверхности помещена обмотка возбуждения двигателя, пригруз жестко присоединен к корпусу, а демпфер установлен между пригрузом и основанием.
Для возбуждения сейсмоисточником поперечных сейсмических волн (п.2 формулы изобретения) основание излучателя выполнено с наклоном его верхней поверхности относительно прилегающей к грунту нижней поверхности, на которой выполнены зубцы для возможности их погружения в грунт, а на верхней поверхности основания помещена пластина из материала высокой электропроводности.
Получение технического результата достигается за счет уменьшения массы основания-излучателя, повышения равномерности распределения создаваемой на основание силы двигателя по ее площади и возможности увеличения максимального значения этой силы.
Устройство поясняется чертежами. На фиг.1 показан продольный разрез сейсмоисточника; на фиг.2 - графики изменения силы, скорости пригруза и перемещений пригруза и основания; на фиг.3 - вариант выполнения сейсмоисточника с основанием клиновидной формы.
Сейсмоисточник (фиг.1) содержит жесткое основание-излучатель 1, выполненное с плоскопараллельными нижней и верхней поверхностями, на котором закреплена пластина 2 из материала высокой электропроводности. На основание оперт корпус 3 индуктора двигателя, выполненный из немагнитного диэлектрического материала, например текстолита. В пазу корпуса помещена обмотка 4. Пригруз 5 закреплен на корпусе 3. Консоль 6 пригруза соединена с консолью 7 основания 1 посредством оси 8 или иным соединением, обеспечивающим возможность углового перемещения пригруза 5 с корпусом 3 в направлении движения по часовой стрелке. Односторонний демпфер 9 помещается между плитой 1 и пригрузом 5. Обмотка возбуждения 4 двигателя подключена к схеме питания (не показана), обеспечивающей прохождение по обмотке возбуждения импульса тока необходимой величины и длительности.
Работает сейсмоисточник следующим образом. В момент t0 (фиг.2) по сигналу с сейсмостанции от подготовленной к работе схемы питания по обмотке возбуждения 4 (фиг.1) начинает проходить импульс тока необходимой величины и длительности t1. При прохождении по обмотке тока вокруг нее создается импульсный магнитный поток Ф, замыкающийся по немагнитному корпусу 3 и проходящий между обмоткой возбуждения и электропроводящей пластиной 2, в которой индуктируется вихревой ток. В результате между обмоткой и пластиной создается электродинамическая сила 10 (фиг.2), под действием которой основание 1 с пластиной 2 ускоряется в направлении грунта. В результате действия силы 10 на основание 1 в течение времени t1 происходит передача механической энергии двигателя в кинетическую энергию основания и частично в энергию деформации 11 грунта под основанием. При t1<t t2 скорость движения основания снижается за счет механического сопротивления грунта при его деформации. При t>t2 происходит колебательный процесс разгрузки грунта с расположенным на нем основанием. Мощность излучаемой сейсмоисточником сейсмической волны определяется площадью основания и скоростью деформации грунта в течение времени
t0-t2.
Действие электродинамической силы 10 на помещенную в корпус 3 обмотку возбуждения 4 приводит к ускорению корпуса с пригрузом вверх со скоростью 13, максимальное значение которой определяется временем действия силы, т.е. воздействующим на них механическим импульсом силы. После окончания действия электродинамической силы в момент t1 пригруз с корпусом продолжает перемещаться (кривая 12) в поле силы тяжести на высоту Н (момент t3), определяемую полученной ими кинетической энергией. Затем корпус с пригрузом под действием силы тяжести перемещается вниз в исходное положение на основании. С целью уменьшения повторного механического воздействия на основание скорость перемещения 13 пригруза с корпусом вниз (пунктирная часть линии 13 на фиг.2) ограничивается до допустимого значения демпфером 9, присоединенным между пригрузом и основанием.
После возврата пригруза с корпусом в исходное на основание положение в обмотку возбуждения может быть подан очередной импульс тока, и процесс создания сейсмической волны повторяется.
Для возбуждения сейсмоисточником поперечных сейсмических волн жесткое основание (фиг.3 п.2 формулы) выполнено с углом наклона его верхней поверхности относительно прилегающей к грунту нижней поверхности, на которой выполнены зубья для возможности их погружения в грунт, а на верхней поверхности основания помещена пластина из материала высокой электропроводности (якорь двигателя). При таком техническом решении создаваемая двигателем сила Р имеет вертикальную
Pв=P·cos
и горизонтальную
Pг =P·sin
составляющие. Вертикальная составляющая обеспечивает погружение зубьев основания в грунт путем создания сейсмоисточником нескольких предварительных импульсов силы. При рабочем режиме она обеспечивает необходимое прижатие основания к поверхности грунта. При этом создается также упругая деформация грунта в вертикальном направлении, и генерируются сейсмические волны (в основном продольные) меньшей интенсивности, чем при работе сейсмоисточника при плоском основании (угол равен нулю).
Горизонтальная составляющая Рг силы Р приводит к горизонтальному смещению основания и соответствующему механическому воздействию на грунт через погруженные в грунт зубья, что сопровождается генерированием поперечных сейсмических волн.
В предложенном сейсмоисточнике применен магнитно-импульсный двигатель, принципиальными особенностями которого, в сравнении с используемым в прототипе двигателем электромагнитного типа с зазором между магнитопроводом якоря и индуктора, являются меньший вес и возможность получения большей силы с меньшей длительностью t1 ее действия. Эти особенности определяют возможности повышения сейсмической эффективности, технических и эксплуатационных характеристик сейсмоисточника.
В предложенном сейсмоисточнике длительность силы t1 может быть существенно, то есть в 2-3 раза меньше времени t2 сжатия грунта основанием. При выполнении этого условия реакция грунта на величину передаваемой в движение плиты механической энергии влияет слабо из-за незначительной его деформации за время t1 длительности силы. При этом приближенные значения скоростей и энергий основания и пригруза с корпусом, получаемые ими за время t1 действия силы, при ее среднем значении Рср определяются следующим образом.
Двигатель создает механический импульс
в результате приложения которого основание массой m1 пригруз с корпусом массой m2 ускоряются, соответственно, до скоростей
Их кинетические энергии
Коэффициент передачи механической энергии двигателя в кинетическую энергию основания, определяющую энергию воздействия на грунт сейсмоисточником
Из (4) следует, что значение при уменьшении массы m1 основания возрастает.
В предложенном техническом решении уменьшение суммарной массы пластины-якоря 2 с основанием 1 обеспечивается, во-первых, за счет применения магнитно-импульсного двигателя, имеющего массу якоря существенно меньше, чем масса ферромагнитного якоря двигателя по прототипу, при одинаковой развиваемой ими силе. Во-вторых, увеличение площади механического воздействия якоря на плиту (в сравнении с прототипом) снижает удельные динамические нагрузки на плиту, что позволяет уменьшать ее массу при сохранении жесткости и прочности.
Увеличение тока Im обмотки возбуждения, создаваемого при разряде на обмотку заряжаемого от автономного источника питания, например от аккумуляторной батареи, конденсатора, позволяет увеличивать силу магнитно-импульсного двигателя (развиваемая им сила прямо пропорциональна квадрату тока). В то время как у электромагнитного двигателя развиваемая сила пропорциональна квадрату индукции магнитного поля в зазоре между якорем и индуктором, а величина индукции магнитного поля ограничена насыщением магнитопровода. В итоге у электромагнитного двигателя отношение силы к весу якоря обычно не превышает 1000 Н/кг.
Экспериментальный сейсмоисточник предложенного типа с общей массой 50 кг и массой пластины-якоря 6 кг развивает усилие на основание-излучатель до 3·104 H. В итоге отношение силы к весу якоря в предложенном сейсмоисточнике составляет 5000 Н/кг (превышает соответствующий показатель прототипа в 5 раз).
Более мощные сейсмоисточники могут быть размещены на транспортном средстве высокой проходимости (автомобиль, автомобиль с прицепом, трактор) или выполнены в виде саней-излучателей, перемещаемых транспортным средством.
Класс G01V1/155 с использованием масс, движущихся возвратно-поступательно