комплексная экзотермическая смесь

Классы МПК:B22D1/00 Обработка расплава в ковшах или в подводящих желобах перед его разливкой
Автор(ы):, , , , , , , , ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Московский государственный университет путей сообщения" (МИИТ) (RU)
Приоритеты:
подача заявки:
2010-12-13
публикация патента:

Комплексная экзотермическая смесь предназначена для внепечной обработки антифрикционных чугунов. Смесь содержит, мас.%: металлический алюминий 25-38; ферротитан 12-25; фтористый кальций 11-17; окислы меди 14-27; азотированный ферромарганец 7-18; угольная пыль 1-5. Достигается повышение трещиностойкости, выхода годного, ударной вязкости, износостойкости и антифрикционных свойств сплавов. 2 табл.

Формула изобретения

Комплексная экзотермическая смесь, содержащая металлический алюминий, ферротитан, фтористый кальций и угольную пыль, отличающаяся тем, что она дополнительно содержит окислы меди и азотированный ферромарганец при следующем соотношении компонентов, мас.%:

Металлический алюминий 25-38
Ферротитан 12-25
Фтористый кальций 11-17
Окислы меди14-27
Азотированный ферромарганец 7-18
Угольная пыль1-5

Описание изобретения к патенту

Изобретение относится к области литейного производства, в частности к экзотермическим смесям, используемым для внепечной обработки антифрикционных чугунов.

Известна экзотермическая смесь (а.с. СССР № 608608, МПК В22D 7/06, 1978), содержащая, мас.%: материал на основе оксидов железа 25-50; хромовая руда 5-25; алюминиевый порошок 10,5-18; материал на основе углерода 5-12; глина огнеупорная 5-10; огнеупорный наполнитель 3-25 и связующее 5-10. Известная смесь имеет недостаточную стабильность процесса протекания термохимических реакций и не обеспечивает при внепечной обработке литейных Fe-C сплавов существенного повышения температуры, износостойкости и выхода годного. Высокое содержание в известной смеси хромовой руды, огнеупорного наполнителя, оксидов железа и огнеупорной глины снижает рафинирующий и модифицирующий эффекты, механические, технологические и антифрикционные свойства сплавов.

Известна также комплексная экзотермическая смесь (патент Франции № 2338097, МПК В22D 7/00, 1977), содержащая, мас.%:

Металлический алюминий 10-40
Оксиды алюминия, кальция или магния 10-80
Перлит и/или вермикулит0-30
Древесная мука 5-30
Угольная пыль0-5

Данная комплексная экзотермическая смесь вызывает интенсивное протекание экзотермических реакций и повышение температуры расплава, но снижает технологические и антифрикционные свойства Fe-C сплавов.

Наиболее близкой по технической сущности и достигаемому эффекту к предложенной является комплексная экзотермическая смесь (патент РФ № 2376101, МПК В22D 1/00, 2009, прототип), содержащая, мас.%:

Металлический алюминий 25-38
Фтористый кальций 18-35
Оксиды алюминия14-27
Силикокальций или ферротитан12-25
Угольная пыль 1-5

При внепечной обработке антифрикционных Fe-C сплавов различными формованными модифицирующими таблетками, экзотермическими вкладышами и прессованными брикетами, изготовленными из этой комплексной экзотермической смеси, происходит интенсивное протекание экзотермических реакций, повышение жидкотекучести и температуры расплавов, повышение трещиностойкости отливок и выхода годного (для чугунов до 63-67%, для литейных сталей - до 44-50%). Однако при этом отмечается недостаточное микролегирующее влияние смеси, снижение износостойкости и антифрикционных свойств сплавов, что особенно наблюдается при повышенных концентрациях силикокальция, фтористого кальция и оксидов алюминия.

Задача изобретения - повышение износостойкости и антифрикционных свойств обрабатываемых сплавов.

Поставленная задача решается тем, что комплексная экзотермическая смесь, содержащая металлический алюминий, фтористый кальций, ферротитан и угольную пыль, дополнительно содержит окислы меди и азотированный ферромарганец при следующем соотношении компонентов, мас.%:

Металлический алюминий 25-38
Ферротитан12-25
Фтористый кальций 11-17
Окислы меди14-27
Азотированный ферромарганец7-18
Угольная пыль 1-5

Дополнительное введение окислов меди обусловлено тем, что они являются эффективными химически активными экзотермическими и модифицирующими добавками, оказывающими положительное влияние на температурные, термодинамические и технологические параметры железоуглеродистых расплавов, их однородность и дисперсность структуры, износостойкость, коэффициент трения и другие антифрикционные свойства сплавов. При увеличении их содержания более 27% усиливается интенсивность протекания экзотермических реакций и повышаются кинетические параметры расплавов, что увеличивает угар металла и снижение однородности и износостойкости сплава в отливках. При концентрации окислов меди менее 14% их модифицирующий эффект, технологические и антифрикционные свойства сплавов в отливках недостаточны.

Дополнительное введение азотированного ферромарганца в количестве 7-18% обусловлено тем, что он является эффективной микролегирующей и модифицирующей добавкой, оказывающей положительное влияние на дисперсность структуры и технологические параметры железоуглеродистых сплавов, износостойкость, коэффициент трения и другие антифрикционные свойства. При увеличении его содержания более 18% уменьшаются кинетические параметры расплавов, что вызывает снижение жидкотекучести металла, однородности и износостойкости сплава в отливках. При концентрации его менее 7% микролегирующий и модифицирующий эффекты недостаточны, а дисперсность структуры, выход годного, технологические и антифрикционные свойства сплавов в отливках низкие.

Для сравнительных испытаний эффективности известной и предложенной комплексных экзотермических смесей проведена их апробация в производственных условиях при выплавке в тигельных индукционных печах и последующей внепечной обработке модифицированных антифрикционных чугунов. В табл.1 приведены составы комплексных экзотермических смесей, используемых для внепечной обработки.

Определение трещиностойкости сплавов (по среднему количеству трещин в пробе) проводили на звездообразных 250 мм технологических пробах высотой 140 мм, жидкотекучести - на спиральных технологических пробах, а прочностных свойств - по ГОСТ 1497-84 на образцах диаметром 14 мм с расчетной длиной 70 мм. Для определения ударной вязкости использовали образцы 10×10×55 мм. Металлографические исследования и анализ дисперсности структуры чугуна проводили в соответствии с ГОСТ 3443-87.

Опытные плавки антифрикционного чугуна АЧС-3 проведены в тигельных индукционных печах с использованием в качестве шихтовых материалов литейных чугунов Л3 и Л5, чугунного лома марки 17А, стального лома 1А, углеродистого феррохрома, никеля НПЗ, ферромарганца ФМн 75. При выпуске чугуна в ковш его температура составляла 1380комплексная экзотермическая смесь, патент № 2454294 1410°С. Содержание компонентов в чугуне перед обработкой смесью, мас.%: углерод 3,5-3,6; кремний 2,3-2,5; марганец 0,5; никель 0,2; медь 0,5; хром 0,03; фосфор 0,05; сера 0,02 и железо - остальное.

Комплексные экзотермические смеси в бумажных пакетах или в прессованных цилиндрических таблетках диаметром 50 мм и высотой 50 мм вводили на дно чайникового ковша перед заливкой чугуна. Заливку чугуна с температурой 1370-1400°С производили в песчано-глинистые формы для получения технологических проб, отливок типа втулок и образцов для механических испытаний.

В табл.2 приведены технологические свойства антифрикционных чугунов, полученных после внепечной обработки известной и предложенными составами экзотермических смесей.

Апробация в производственных условиях показала, что предложенная комплексная экзотермическая смесь является эффективной химически активной и микролегирующей добавкой при внепечной обработке и оказывает положительное влияние на износостойкость, антифрикционные свойства, температурные и технологические параметры антифрикционных сплавов, способствует повышению твердости, трещиностойкости и выхода годного в большей степени, чем известная.

Таблица 1
Составы смесей Содержание компонентов в экзотермических смесях, мас.%
Металлический алюминий Фтористый кальций Окислы меди Азотированный ферромарганец ФерротитанУгольная пыльОксиды алюминия
1 /Известная/ 29,3 28- -17 421,7
2 22,318 285 19,77 -
3 38 1127 712 5-
4 3214 2013 174 -
5 25 1714 1825 1-
6 437 109,5 300,5 -

Таблица 2
СмесьТвердость, НВВыход годного литьяТрещиностойкость, количество трещин в технологической пробе Коэффициент трения Средний износ, мг/гс Ударная вязкость, Дж/см2
1 /Известная/165 66 3,40,38 2812
2 16768 3,00,37 2514
3 18071 2,30,35 2217
4 18874 2,50,32 1821
5 17572 2,90,33 2119
6 17269 3,20,36 2315

Класс B22D1/00 Обработка расплава в ковшах или в подводящих желобах перед его разливкой

способ и устройство модифицирования -  патент 2518879 (10.06.2014)
комплексная экзотермическая смесь -  патент 2517083 (27.05.2014)
устройство для получения тиксозаготовок с глобулярной структурой -  патент 2509623 (20.03.2014)
фурма для донной продувки металла газами в ковше и способ ее изготовления -  патент 2479635 (20.04.2013)
устройство "газорукав" для рафинирования, вакуумирования и разливки металла -  патент 2460609 (10.09.2012)
сталькомбайн "комкоб" кобзарь-дерновского для непрерывной ковшевой металлургии -  патент 2460606 (10.09.2012)
ступень погружного многоступенчатого центробежного насоса и способ ее изготовления -  патент 2450888 (20.05.2012)
способ и аппарат для индукционного перемешивания жидкого металла -  патент 2443961 (27.02.2012)
тиксозаготовка, способ, устройство для ее изготовления и способ штамповки -  патент 2434706 (27.11.2011)
способ получения отливок из износостойкого белого чугуна -  патент 2412780 (27.02.2011)
Наверх