способ изготовления источников на основе радионуклида, выбранного из группы щелочноземельных элементов

Классы МПК:G21G4/04 радиоактивные источники, кроме источников нейтронов
Автор(ы):, ,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Научно-производственное объединение "Радиевый институт им. В.Г. Хлопина" (RU)
Приоритеты:
подача заявки:
2011-02-14
публикация патента:

Изобретение относится к области технологии изготовления закрытых радионуклидных источников фотонного и бета-излучений. Способ включает изготовление активной части источника из пористого керамического материала путем его пропитки ацетатом радиоактивного щелочноземельного элемента и перевода его в карбонат нагреванием. При этом на всех стадиях этого процесса отсутствует взаимодействие радиоактивного вещества с материалом матрицы. Способ позволяет изготавливать высоконадежные источники на основе радионуклидов Са45, Sr90, Ba133, Ra226 простым способом с малыми радиационными нагрузками на работающий персонал. 2 з.п. ф-лы, 2 пр.

Формула изобретения

1. Способ изготовления источников на основе радионуклида, выбранного из группы щелочноземельных элементов, включающий изготовление активной части путем фиксации радионуклида в керамической матрице, перевод радионуклида в радиационно устойчивую нерастворимую форму и последующее капсулирование, отличающийся тем, что пористую керамическую матрицу пропитывают ацетатом радиоактивного щелочноземельного элемента и переводят его в карбонат нагреванием.

2. Способ по п.1, отличающийся тем, что нагревание матрицы осуществляют до температуры, превышающей температуру разложения ацетата, но ниже температуры взаимодействия образовавшегося карбоната с материалом матрицы.

3. Способ по п.1 или 2, отличающийся тем, что в качестве материала матрицы используют керамическое вещество, не вступающее во взаимодействие с ацетатами щелочноземельных металлов и продуктами их термического разложения.

Описание изобретения к патенту

Изобретение относится к области технологии изготовления закрытых радионуклидных источников фотонного и бета-излучений.

Источники ионизирующего излучения, состоящие из керамической активной части, обладающие свойствами термической, радиационной и гидролитической устойчивости, являются наиболее безопасными с точки зрения потенциальной возможности загрязнения окружающей среды. В особенности это относится к источникам повышенной мощности, работающим в экстремальных условиях, увеличивающих риск аварийной разгерметизации капсулирующей оболочки.

Необходимость обеспечения безопасных условий труда на предприятиях-изготовителях такой продукции привела к постепенной замене традиционной порошковой технологии изготовления активных частей источников на технологию пропитки заранее изготовленной пористой матрицы радиоактивным раствором с последующим закреплением радионуклида в нерастворимой форме.

Практически к осуществлению этого процесса подходят двумя путями.

Первый путь - это использование материала матрицы в качестве одного из исходных компонентов в процессе перевода радиоактивного вещества в нерастворимую термически и радиационно стойкую форму. Так, в способе по патенту [GB 14425627, INTCL G21G 4/00, G21H 5/02, дата публикации 1976-02-18] предлагается изготавливать активную часть источников в виде пористых таблеток из апатитоподобной керамики, которая при ее пропитке галоидными солями щелочноземельных металлов химически фиксирует их по реакции:

способ изготовления источников на основе радионуклида, выбранного   из группы щелочноземельных элементов, патент № 2454744

где M - двухвалентный радионуклид, например Ca, Sr, Ba;

M' - двухвалентный нерадиоактивный металл;

X - галоген.

На конечной стадии процесса осуществляется сушка таблеток и термический обжиг.

Подобным образом используется материал матрицы активной части в способе по патенту [US 3093593, INTCL G21F 9/12, G21F 9/30, дата публикации 1963-11-06]. Для прочной фиксации радионуклидов, с целью их захоронения или изготовления источников, разработан метод и состав керамики со свойствами поверхностного термического остекловывания (глазурования). Соли радионуклидов, осажденные путем пропитывания и сушки в порах такой керамики при температуре 1200-1400°С за счет взаимодействия с компонентами матрицы, переходят в нерастворимую силикатную форму. Доведение закладной активности до требуемого значения достигается цикличностью процесса "пропитка-прокаливание". Но как показывает опыт, уже после первого цикла некоторые зоны матрицы становятся недоступными для дополнительного введения в них радиоактивного вещества.

Следствием этого является неравномерность выходящего потока фотонного и в особенности бета-излучения источников, изготовленных таким способом. Также известно, что фиксация радиоактивного вещества на поверхности матрицы значительно ниже, чем внутри, что объясняется ограниченной емкостью внешней поверхности.

Второй путь - это использование матрицы в качестве инертного каркаса-носителя, в порах которого пропитывающее радиоактивное вещество фиксируется путем химического превращения его в нерастворимую форму. Примером может служить способ по патенту [US 3664148, INTCL G21G 4/04, G21G 4/00, дата публикации 1968-01-16]. Матрица из пористого кремнезема последовательно пропитывается двумя растворами - сначала раствором, содержащим радиоактивный материал, а затем - переводящим его в нерастворимую форму. В качестве примера приводится перевод хлорида стронция в нерастворимый сульфат с помощью сульфата натрия или серной кислоты. Для дополнительной герметизации активной части используют ее поверхностное оплавление или металлизацию.

Очевидный недостаток этого способа следует из механизма его реализации. Процесс отверждения радиоактивного материала в порах матрицы развивается от периферии к центру по мере продвижения пропитывающего фиксирующего раствора и идет до тех пор, пока образовавшаяся нерастворимая соль не перекроет входы капиллярных каналов. Для щелочноземельных радионуклидов с невысокой удельной активностью вероятность такого события чрезвычайно высока, а следовательно, и высока вероятность оставления радиоактивного вещества в глубине матрицы в растворимой форме.

Данный способ можно рассматривать в качестве прототипа изобретения.

Задача предлагаемого изобретения заключается в создании способа надежной фиксации щелочноземельных радионуклидов в пористой керамической матрице, используемой при изготовлении источников.

Поставленная задача решатся тем, что в качестве радиоактивного материала, пропитывающего керамическую матрицу, используют ацетат радионуклида из группы щелочноземельных элементов.

Известно [Карякин Ю.В., Ангелов И.И. Чистые химические вещества. изд. 4-е пер. и доп. М., «Химия», 1974. 408 с, 66 рис.], что в результате термического разложения ацетатов щелочноземельных элементов получают их нерастворимые термически и радиационностойкие карбонаты, то есть выполняются все основные требования к химической форме активной части источника. Реакция протекает с образованием ацетона, который легко удаляется из пористой матрицы:

M(CH3COO)2=MCO3+(CH3 )2COспособ изготовления источников на основе радионуклида, выбранного   из группы щелочноземельных элементов, патент № 2454744 ,

где M - двухвалентный радионуклид, например Ca, Sr, Ba, Ra.

Процесс разложения ацетатов щелочноземельных элементов начинается уже при 150°С, а при 550°С он проходит быстро, одновременно по всей массе вещества и до конца. В указанном интервале температур практически не один из обычно используемых материалов матрицы (стеатитовая, алюмосиликатная, кордиеритовая керамика) не взаимодействует с тугоплавкими карбонатами. В то же время карбонаты легко растворяются в уксусной кислоте, что в случае необходимости допускает передел активной части без потери радиоактивного вещества, а также его изъятие из источников, выработавших установленный ресурс. При этом радиоактивное вещество не загрязняется конструкционным материалом матрицы и капсулы источника.

Пропитывание пористой матрицы насыщенным раствором соли радионуклида - практически одностадийный процесс, так как закупоривание каналов, в дальнейшем, препятствует существенной корректировке закладной активности источника. В случае щелочноземельных элементов их ацетатные соли, имеющие максимальное значение растворимости, позволяют добиться лучших результатов при изготовлении малогабаритных источников большой мощности.

Технический результат изобретения заключается в создании способа, позволяющего изготавливать высоконадежные источники на основе радионуклидов Ca45 , Sr90, Ba133, Ra226 простым способом с малыми радиационными нагрузками на работающий персонал.

Пример 1

Активная часть представляет собой таблетку диаметром 4 мм и высотой 1,2 мм, изготовленную из пористой алюмосиликатной керамики плотности 1,6 г/см, открытая пористость - 55%, емкость таблетки по воде - 6 мкл, требуемая закладная активность - 20 мКи. При удельной активности препарата Ba133 9 мКи/г требуется 5,2 мкл насыщенного раствора его ацетата. Это количество отбирается дозатором и накапывается на пористую таблетку из алюмосиликатной керамики, которая высушивается и прокаливается при температуре 550°С в течение 1 часа до полного разложения ацетата бария и перехода его в карбонат. Готовую активную часть источника подвергают капсулированию.

Пример 2

Активная часть представляет собой таблетку диаметром 3 мм и высотой 1,5 мм, изготовленную из пористой стеатитовой керамики плотности 1,7 г/см, открытая пористость - 50%, емкость таблетки по воде - 4,2 мкл, требуемая закладная активность - 10 мКи. При удельной активности препарата Sr90 64 мКи/мг требуется 3,2 мкл насыщенного раствора его ацетата. Это количество отбирается дозатором и накапывается на пористую таблетку из стеатитовой керамики, которая высушивается и прокаливается при температуре 550°С в течение 1 часа до полного разложения ацетата стронция и перехода его в карбонат. Готовую активную часть источника подвергают капсулированию.

Класс G21G4/04 радиоактивные источники, кроме источников нейтронов

способ получения стронция-82 -  патент 2522668 (20.07.2014)
радионуклидный источник излучения для радиационной гамма-дефектоскопии -  патент 2499312 (20.11.2013)
способ получения натрия-22 из облученной протонами алюминиевой мишени -  патент 2489761 (10.08.2013)
способ получения генераторного радионуклида рений-188 -  патент 2481660 (10.05.2013)
способ получения источников гамма-излучения на основе радионуклида 74se для гамма-дефектоскопии -  патент 2444074 (27.02.2012)
способ изготовления альфа-радиоактивных источников -  патент 2397562 (20.08.2010)
ампула облучательного устройства ядерного реактора -  патент 2342716 (27.12.2008)
способ изготовления источника позитронов -  патент 2278431 (20.06.2006)
способ изготовления тритиевого источника -излучения -  патент 2257628 (27.07.2005)
закрытый источник альфа-излучения -  патент 2235378 (27.08.2004)
Наверх