способ получения монооксида олова в условиях гидротермально-микроволновой обработки
Классы МПК: | C01G19/02 оксиды |
Автор(ы): | Козик Владимир Васильевич (RU), Кузнецова Светлана Анатольевна (RU), Горб Михаил Григорьевич (RU) |
Патентообладатель(и): | Государственное образовательное учреждение высшего профессионального образования "Томский государственный университет" (ТГУ) (RU) |
Приоритеты: |
подача заявки:
2011-04-06 публикация патента:
10.07.2012 |
Изобретение может быть использовано для получения монооксида олова, применяемого как исходное вещество для создания материалов электронной техники, в стекольной промышленности, медицине и авиации в качестве теплоотражающего покрытия, антиобледенителя и газочувствительного элемента. Способ включает приготовление исходного раствора гидроксоформы олова, помещение его в автоклав и установление автоклава в микроволновую установку. Исходный раствор гидроксоформы олова готовят путем растворения металлического олова в соляной кислоте при продувке кислородом воздуха. Автоклав с раствором устанавливают в микроволновую установку на 10-60 минут при давлении 6-14 атм и мощности микроволнового нагрева 150 Вт. Исходный раствор объемом 100 мл готовят при следующем соотношении компонентов: олово - 0,2-2 мас.%; 36% (мас.) раствор соляной кислоты - 52,9-42,0 мас.%; 9% (мас.) раствор гидроксида аммония - 46,9-56,0 мас.%. Изобретение позволяет получить монооксид олова с размером зерна от 300 нм до 6 мкм и устойчивостью к окислению кислородом воздуха до температуры 310°C при минимальных затратах времени и средств. 1 ил., 1 табл., 3 пр.
Формула изобретения
Способ получения монооксида олова в условиях гидротермально-микроволновой обработки, включающий приготовление исходного раствора гидроксоформы олова, помещение его в автоклав и установление автоклава в гидротермально-микроволновую установку, отличающийся тем, что исходный раствор гидроксоформы олова готовится путем растворения металлического олова в соляной кислоте при продувке кислородом воздуха, автоклав с раствором устанавливают в гидротермально-микроволновую установку на 10-60 мин при давлении 6-14 атм и мощности микроволнового нагрева 150 Вт, исходный раствор объемом 100 мл готовят при следующем соотношении компонентов, мас.%:
олово | 0,2-2 |
36%-ный (мас.) раствор соляной кислоты | 52,9-42,0 |
9%-ный (мас.) раствор гидроксида аммония | 46,9-56,0 |
Описание изобретения к патенту
Изобретение относится к способу получения монооксида олова, применяемого как исходное вещество для создания материалов электронной техники, в стекольной промышленности, медицине и авиации в качестве теплоотражающего покрытия, антиобледенителя и газочувствительного элемента.
Известен способ получения оксидов металлов (Заявка ФРГ N 4023278, кл. C01G 19/02, 1992), в частности оксида олова (IV), путем обработки расплавленного металла газообразным, жидким кислородом или смесью кислорода с инертным газом. Поток расплавленного металла подают в реактор сверху. Кислород или смесь кислорода с инертным газом подают под углом 90° к потоку расплава металла в стехиометрическом под давлением 0,5-10,0 МПа. Таким образом, диспергированные частицы расплава окисляются, выделяя тепло, для утилизации которого реакционная зона снабжена теплообменником. Частицы оксида металла улавливают во всасывающем раструбе, расположенном в нижней части реактора, далее транспортируют потоком газа и осаждают в циклоне, а также в фильтре. Для транспортировки порошка оксида металла и обеспечения пожаробезопасности применяют смесь кислорода с инертным газом. К недостатками известного способа можно отнести сложность работы с кислородом при достаточно высоком давлении, необходимость соблюдения мер пожаро- и взрывобезопасности из-за высокой температуры в реакционной зоне и дорогостоимость.
Известен способ (Структура и состояние поверхности нанооксида олова (IV), полученного микроволновым нагревом гидратированного оксида олова (II) // Ползуновский вестник. - № 3 - 2009, - С.282-285.), описывающий получение оксида олова (IV) в микроволновой печи (частота 2,45 МГц). Исходную систему для получения оксидов готовят путем растворения металлического олова в концентрированной соляной кислоте с последующим осаждением гидроксоформы олова (II) избытком 25% раствора аммиака. Насыщенный раствор гидроксоформы олова переносят в химический стакан и нагревают в микроволновой печи 1 час. Полученные образцы отмывают от остатков аммиака дистиллированной водой и сушат при 95°C. К недостаткам данного способа можно отнести наличие выбросов в атмосферу аммиака и продуктов его взаимодействия с соляной кислотой при обработке исходного раствора в микроволновой установке.
Наиболее близким по технической сущности к заявляемому способу получения оксида олова является способ (3) (Microwave-assisted hydrothermal synthesis of nanocrystalline SnO powders / F.I.Pires [et al.] // Materials letters. - 2008. - V.62 - P.239-242.), описывающий получение оксида олова (II) в гидротермальных условиях под воздействием микроволн. Исходная система для получения оксидов готовилась путем растворения SnCl2·2H2O в подкисленной воде при длительном перемешивании и комнатной температуре. В водный раствор SnCl2 2Н2O добавляют концентрированные минерализующие агенты (NaOH, КОН или NH4OH). Концентрация хлорида олова (II) составляла 0.25 моль/л. Маточный раствор помещают в тефлоновый автоклав (CEM, ХР 1500). Автоклав герметизируют и устанавливают в СВЧ установку (СЕМ Corporation, MARS 5). В СВЧ установке автоклав выдерживают при 120-180°C 2-6 часов. После синтеза порошки охлаждают, промывают раствором этилового спирта и сушат при комнатной температуре. Полученные образцы имеют размер от 30 нм до 2 мкм. К недостаткам данного прототипа можно отнести большие затраты времени при подготовке исходной системе и выдержке ее в автоклаве под воздействием микроволн.
Задачей настоящего изобретения является разработка гидротермально-микроволнового способа получения монооксида олова (II) с размером зерна от 300 нм до 6 мкм и устойчивостью к окислению кислородом воздуха до температуры 310°C при минимальных затратах времени и средств.
Поставленная задача решается тем, что монооксид олова получают в условиях гидротермально-микроволновой обработки, включая приготовление исходного раствора гидроксоформы олова, помещение его в автоклав и установление автоклава в гидротермально-микроволновую установку.
В отличие от прототипа исходный раствор гидроксоформы олова готовится путем растворения металлического олова в растворе соляной кислоты при продувке кислородом воздуха, автоклав с исходным раствором устанавливают в гидротермально-микроволновую установку на 10-60 минут при давлении 6-14 атм и мощности микроволнового нагрева 150 Вт, исходный раствор объемом 100 мл готовят при следующем соотношении компонентов, мас.%:
олово - 0,2-2 мас.%;
36% (мас.) раствор соляной кислоты - 52,9-42,0 мас.%;
9% (мас.) раствор гидроксида аммония - 46,9-56,0 мас.%.
Такой способ приготовления исходного раствора гидроксоформы олова позволяет снизить вероятность образования в примесей ионов Sn4+.
Конечный продукт (SnO) получают как сине-черной тетрагональной формы, так и красной модификации, который отмывают от примесей дистиллированной водой и сушат при температуре 90°С.
Свойства полученных образцов SnO приведены в таблице. Их удельная поверхность составляет 0,1-24 м2/г с объемом пор 0,006681-0,065725 см 3/г, размер частиц от 300 нм до 6 мкм. Оксид олова (II) устойчив к окислению кислородом воздуха до 310°C.
Пример 1. Исходный раствор объемом 100 мл готовят, растворяя 0,21 г металлического олова в 45,4 мл раствора 18%-ной соляной кислоты, продувая кислородом воздуха при постоянном перемешивании 24 часа, после чего добавляют 54,6 мл 9%-ного раствора гидроксида аммония. Пятьдесят миллилитров полученного насыщенного раствора вносят в автоклав и последний герметизируют. Автоклав устанавливают в лоток микроволновой установки, выдерживают 10 минут при мощности нагрева 150 Вт и непрерывном росте давления до 14 атм. Полученный образец отмывают от остатков аммиака дистиллированной водой и сушат при температуре 90°C. В данных условиях получается SnO тетрагональной структуры с удельной поверхностью 0,1 м 2/г, объемом пор 0,006681 см3/г, с размером кристаллита 300 нм - 1 мкм, устойчивый к окислению кислородом воздуха до 310°C.
Пример 2. Исходный раствор объемом 100 мл готовят, растворяя 1,00 г металлического олова в 40,0 мл раствора 18%-ной соляной кислоты, продувая кислородом воздуха при постоянном перемешивании 24 часа, после чего добавляют 60,0 мл 9%-ного раствора гидроксида аммония. Пятьдесят миллилитров полученного насыщенного раствора гидроксоформы олова вносят в автоклав и последний герметизируют. Автоклав устанавливают в лоток микроволновой установки, выдерживают 60 минут при мощности нагрева 150 Вт и постоянном давлении 8±0,2 атм. Полученный образец отмывают от остатков аммиака дистиллированной водой и сушат при температуре 90°C. В данных условиях получается SnO тетрагональной структуры с удельной поверхностью 24 м 2/г, объемом пор 0,065725 см3/г, с размером кристаллита 500 нм - 1 мкм, устойчивый к окислению кислородом воздуха до 310°C.
Пример 3. Исходный раствор объемом 100 мл готовят, растворяя 0,73 г металлического олова в 48,4 мл раствора 18%-ной соляной кислоты, продувая кислородом воздуха при постоянном перемешивании 24 часа, после чего добавляют 51,6 мл 9%-ного раствора гидроксида аммония. Пятьдесят миллилитров полученного насыщенного раствора гидроксоформы олова, вносят в автоклав и последний герметизируют. Автоклав устанавливают в лоток микроволновой установки, выдерживают 15 минут при мощности нагрева 150 Вт и росте давления до 14 атм. Полученный образец отмывают от остатков аммиака дистиллированной водой и сушат при температуре 90°C. В данных условиях получается SnO тетрагональной структуры с удельной поверхностью 0,4 м2/г, объемом пор 0,006581 см3/г, с размером кристаллита 600 нм - 6 мкм, устойчивый к окислению кислородом воздуха до 30°C.
В таблице 1 приведены параметры структуры и удельной поверхности образцов. Состав полученных образцов соответствует оксиду олова в неустойчивой степени окисления +2 тетрагональной структуры. Параметры решетки зависят от времени и давления в автоклаве при получении оксида в гидротермальных микроволновых условиях. Исследование образцов после хранения 1,5 года указывают на 100%-ный состав SnO, окисление не происходит.
На рисунке 1 представлена морфология поверхности образцов SnO, полученных в различных условиях гидротермально-микроволнового воздействия. Порошки оксида представляют собой частицы четкой огранки с размером зерна 300 нм - 6 мкм.
Преимуществом заявленного изобретения является возможность получения монооксида олова устойчивым к окислению кислородом воздуха до 310°C. Способ позволяет снизить давление и время синтеза, а также контролировать мощность нагрева.
Таблица 1 | |||||
Параметры структуры и удельной поверхности монооксида олова в зависимости от условий синтеза | |||||
№ | Условия получения | Параметры решетки, нм | Удельная поверхность, м2/г | Объем пор, см3/г | Размер пор, Å |
1 | непрерывный рост давления 10 мин, мощность 150 Вт, m Sn=2,1 г | а=3,798 с=4,829 | 0,1 | 0,006681 | 460,36 |
2 | постоянное давление 60 мин, мощность 150 Вт, m Sn=1 г | а=3,797 с=4,826 | 24 | 0,065725 | 114,66 |
3 | непрерывный рост давления 15 мин, мощность 150 Вт, m Sn=0,75 г | а=3,799 с=4,827 | 0,4 | 0,006581 | 440,53 |