способ измерения распределения скорости звука в жидкой среде
Классы МПК: | G01H5/00 Измерение скорости распространения ультразвуковых, звуковых или инфразвуковых колебаний |
Автор(ы): | Серавин Георгий Николаевич (RU), Микушин Игорь Иванович (RU) |
Патентообладатель(и): | Микушин Игорь Иванович (RU) |
Приоритеты: |
подача заявки:
2010-07-20 публикация патента:
20.07.2012 |
Изобретение относится к области акустических измерений и может быть использовано для измерения вертикального распределения скорости звука в естественных водоемах. Техническим результатом изобретения является упрощение проведения измерений. Согласно способу облучают звуковыми колебаниями акустический рассеиватель, находящийся в жидкости на фиксированном горизонте, принимают рассеянный обратно от него акустический сигнал, измеряют скорость звука на горизонте источника и приемника звуковых колебаний, углы наклона характеристик направленности акустического приемника, соответствующие им времена распространения акустического сигнала от источника звуковых колебаний до рассеивателя и обратно к акустическому приемнику. При этом облучают сильный одиночный акустический рассеиватель звуковыми колебаниями последовательно по n+1 углам наклона одной характеристики направленности совмещенного с акустическим приемником источника звуковых колебаний, расположенного на фиксированном горизонте. По измеренным значениям скорости звука на горизонте источника и приемника, углов наклона одной характеристики направленности источника и приемника звуковых колебаний, соответствующих им временам распространения акустического сигнала от источника до рассеивателя и обратно, находят значение горизонта рассеивателя, значения горизонтов n нижних границ n слоев жидкой среды и n значений скорости звука на них, решением системы из n+1 уравнений. 1 з.п. ф-лы, 2 ил., 3 табл.
Формула изобретения
1. Способ измерения распределения скорости звука в жидкой среде, состоящий в том, что облучают звуковыми колебаниями акустический рассеиватель, находящийся в жидкости на фиксированном горизонте, принимают рассеянный обратно от него акустический сигнал, измеряют скорость звука на горизонте источника и приемника звуковых колебаний, углы наклона характеристик направленности акустического приемника, соответствующие им времена распространения акустического сигнала от источника звуковых колебаний до рассеивателя и обратно к акустическому приемнику, отличающийся тем, что облучают сильный одиночный акустический рассеиватель звуковыми колебаниями последовательно по n+1 углам наклона одной характеристики направленности совмещенного с акустическим приемником источника звуковых колебаний, расположенного на фиксированном горизонте, по измеренным значениям скорости звука на горизонте источника и приемника звуковых колебаний, углов наклона одной характеристики направленности совмещенного с акустическим приемником источника звуковых колебаний, соответствующих им временам распространения акустического сигнала от источника до рассеивателя и обратно к совмещенному с источником акустическому приемнику, находят значение горизонта рассеивателя, значения горизонтов n нижних границ n слоев жидкой среды и n значений скорости звука на них, решением системы из n+1 уравнений.
2. Способ по п.1, отличающийся тем, что при определении значений горизонтов и скорости звука на них используют априорную информацию о распределении скорости звука в жидкой среде.
Описание изобретения к патенту
Изобретение относится к области акустических измерений и может быть использовано для измерения вертикального распределения скорости звука в естественных водоемах.
Известны способы измерения распределения скорости звука в жидких средах. Так в способе, на основе которого выполнено устройство по авторскому свидетельству [1], характеристика направленности источника звуковых колебаний пересекается с веером характеристик направленности акустического приемника. К приемнику распространяются акустические сигналы, рассеянные от акустических рассеивателей, находящихся в объемах жидкой среды, ограниченных характеристиками направленности источника и приемника звуковых колебаний. По измеренным значениям скорости звука на горизонте источника и приемника звуковых колебаний, временам распространения акустических сигналов от источника до соответствующих рассеивающих объемов и обратно к акустическому приемнику, углам наклона характеристик направленности акустического приемника и известному расстоянию между расположенными на одном горизонте источником и приемником звука, находят горизонты рассеивающих объемов и значения скорости звука на них.
Причиной, препятствующей достижению технического результата, является использование большого количества относительно мелких естественных акустических рассеивателей (в море - крупного зоопланктона, мелких рыб) в каждом из объемов жидкой среды, ограниченных характеристиками направленности источника и приемника звуковых колебаний. В морской среде для некоторых сезонов года и времени суток на ряде горизонтов требуемого количества естественных рассеивателей может не быть. Для зондирования мелких естественных акустических рассеивателей требуется значительная мощность излучаемого акустического сигнала.
В способе, на основе которого выполнено устройство по авторскому свидетельству [2], характеристика направленности совмещенного с первым акустическим приемником источника звуковых колебаний пересекается с веером характеристик направленности второго акустического приемника. К приемникам распространяются акустические сигналы, отраженные от границ неоднородных слоев жидкой среды, находящихся в объемах, ограниченных характеристиками направленности источника и второго акустического приемника. По измеренным значениям скорости звука на горизонте источника и приемника звуковых колебаний, временам распространения акустических сигналов от источника до соответствующих границ неоднородных слоев жидкой среды и обратно к акустическим приемникам, разности между значениями несущих частот сигналов излучаемого и принятого вторым акустическим приемником, углам наклона характеристик направленности второго акустического приемника и известному расстоянию между расположенными на одном горизонте источником и вторым акустическим приемником, находят горизонты границ неоднородных слоев жидкой среды и значения скорости звука на них.
Причиной, препятствующей достижению технического результата, является использование рассеивающего звук неоднородного слоя в каждом из объемов жидкой среды, ограниченных характеристиками направленности источника и второго приемника звуковых колебаний. В реальной морской среде такая ситуация маловероятна. Рассеивающая способность неоднородных слоев мала. Для их зондирования требуется значительная мощность излучаемого акустического сигнала.
Наиболее близким по совокупности признаков и технической сущности к предлагаемому изобретению является способ измерения распределения скорости звука в жидкой среде по авторскому свидетельству [3]. В исследуемую среду источником излучают акустические колебания, которые рассеиваются от n искусственных отражателей (рассеивателей), прикрепленных к тросу на n фиксированных горизонтах, и распространяются далее к акустическим приемникам звука. Источник звука и акустические приемники располагаются на одном фиксированном горизонте. По измеренным значениям времен распространения звуковых колебаний от источника звука до n отражателей и от них до акустических приемников, скорости звука на горизонте источника и приемников звуковых колебаний, известным расстояниям между источником звука и акустическими приемниками находят распределение скорости звука в жидкой среде.
Причиной, препятствующей достижению технического результата, является необходимость крепления к тросу значительного количества искусственных акустических отражателей, выполнение фиксированными расстояний между акустическими приемниками, а также возможность функционирования измерительного устройства на основе этого способа только в стационарных условиях.
Технический результат, который может быть получен при осуществлении изобретения, состоит в функционировании в жидкой среде устройства на основе предлагаемого способа без использования измерительного зонда, искусственных отражателей, большого количества естественных акустических рассеивателей или неоднородных слоев, малая требуемая мощность акустического излучения.
Для достижения технического результата в предлагаемом способе измерения распределения скорости звука в жидкой среде облучают звуковыми колебаниями акустический рассеиватель, находящийся в жидкости на фиксированном горизонте, принимают обратно рассеянный от него акустический сигнал, измеряют скорость звука на горизонте источника и приемника звуковых колебаний, углы наклона характеристик направленности акустического приемника, время распространения акустического сигнала до рассеивателя и обратно к акустическому приемнику. Введены новые признаки - облучают звуковыми колебаниями сильный одиночный акустический рассеиватель последовательно по n+1 углам наклона одной характеристики направленности совмещенного с акустическим приемником источника звуковых колебаний, расположенного на одном фиксированном горизонте. По измеренным значениям скорости звука на горизонте совмещенного с акустическим приемником источника звуковых колебаний, углов наклона одной характеристики направленности совмещенного с акустическим приемником источника звуковых колебаний, соответствующих им временам распространения акустического сигнала до рассеивателя и обратно к совмещенному с акустическим приемником источнику звуковых колебаний, находят значение горизонта рассеивателя, значения горизонтов n нижних границ n слоев жидкости и n значений скорости звука на них решением системы из n+1 уравнений,
В частности, при определении значений горизонтов и скорости звука на них используют априорную информацию о распределении скорости звука в жидкости.
Сущность изобретения поясняется фигурами 1 и 2. На фиг.1 представлена схема облучения звуковыми колебаниями одиночного акустического рассеивателя. На фиг.2 в графическом виде представлены результаты компьютерного моделирования восстановления известного вертикального распределения скорости звука в жидкой среде.
Суть предложенного способа заключается в следующем.
Для измерения распределения скорости звука в жидкости, например вертикального распределения скорости звука в море, совмещенный с акустическим приемником источник звука ИП (фиг.1), располагают на фиксированном горизонте 0. Акустический источник-приемник ИП последовательно излучает n+1 раз звуковые колебания под углами наклона одной характеристики направленности j, j=1, 2, , n, n+1, j /2 в сторону сильного одиночного акустического рассеивателя Р, расположенного на фиксированном горизонте Z. При этом n равно количеству слоев с постоянными вертикальными градиентами скорости звука, на которые разбивается водная среда от горизонта 0 до горизонта Z. Рассеянные от сильного одиночного рассеивателя Р акустические сигналы распространяются к акустическому приемнику ИП, совмещенному с источником звука. В качестве сильного рассеивателя в жидкой среде может быть, например, крупная рыба. На фиг.1 символами Zi, i=1, 2, , n-1, n, Zn=Z обозначены горизонты нижних границ слоев. Измеряют времена распространения tj, j=1, 2, , n, n+1, акустического сигнала от источника-приемника звука ИП к акустическому рассеивателю Р и обратно до акустического приемника-источника звука ИП. Далее по измеренному значению скорости звука С0 на горизонте источника-приемника звука ИП, измеренным значениям углов наклона характеристики направленности j источника-приемника звука ИП, соответствующим им измеренным значениям времен tj, находят значение горизонта рассеивателя Z, значения горизонтов Zi нижних границ слоев и значения скорости звука Ci, i=1, 2, , n-1, n на них.
Значения Zi, i=1, 2, , n-1, n, горизонтов нижних границ слоев определяется из соотношения
Здесь ki·Z=Zi -Zi-1 - толщина i-го водного слоя с постоянным вертикальным градиентом скорости звука, ki=(Zi-Z i-1)/Z - коэффициент, по которому определяют толщину слоя ki 1, , если k1=k2=ki=k n, то ki=1/n.
Значение Z и значения скорости звука Ci, i=1, 2, , n-1, n, на нижних границах слоев при облучении звуковыми колебаниями одиночного акустического рассеивателя по схеме фиг.1, находятся решением системы из n+1 уравнений
Здесь t1( /2) - время распространения акустического сигнала от источника-приемника звука ИП к акустическому рассеивателю Р и обратно до акустического приемника-источника звука ИП для j= /2;
Ci - значение скорости звука на нижней границе i-го слоя;
i+1,j - угол выхода луча из i-го слоя при j-м угле наклона характеристики направленности акустического источника-приемника ИП находят из соотношения
где j - угол наклона характеристики направленности акустического источника-приемника ИП.
При определении значений горизонтов Zi и решении системы уравнений необходимо знание количества слоев n водной среды и соответственно количества n и значения коэффициентов ki, начальное приблизительные значение горизонта рассеивателя Z и начальные приблизительные значения скорости звука Ci на нижних границах слоев. Начальное приблизительное значение Z можно определить по судовому эхолоту или по времени t1( /2) распространения акустического сигнала от источника-приемника звука ИП к акустическому рассеивателю Р и обратно до акустического приемника-источника звука ИП для j= /2, принимая за приближенное среднее значение скорости звука по глубине измеренное значение С0.
Количество слоев водной среды и соответственно количество коэффициентов ki и их значений в общем случае произвольны. Однако при увеличении количества слоев увеличивается число уравнений системы, усложняется и понижается точность ее решения.
Начальные приблизительные значения скоростей звука Ci на нижних границах слоев можно найти итерационным подбором на ЭВМ, полагая, что они отличаются не более чем на ±10% от измеренного значения С0 [4]. Итерационный подбор усложняет решение системы уравнений.
Значительно упрощается определение количества слоев водной среды и соответственно количества и значений коэффициентов ki, начальных приблизительных значений Z и Ci при использовании априорной информации о вертикальном распределении скорости звука - результатов предварительных измерений другим способом, например аппаратурой с погружающимся зондом, или материалов банка океанографических данных. Априорная информация используется только один раз перед первым измерением распределения скорости звука предлагаемым способом. Далее при следующих измерениях распределения скорости звука в данном районе моря предлагаемым способом количество слоев, коэффициентов k i и их значений остаются неизменными, а в качестве начальных приблизительных значений Z и Ci используются их предыдущие измеренные значения.
Проверка возможности реализации предлагаемого способа производилась компьютерным моделированием восстановления известного вертикального распределения скорости звука (ВРСЗ) в море. В качестве известного было выбрано измеренное и аппроксимированное по трем слоям ВРСЗ, характерное для мелкого моря летом. Полагали, что звук отражается сильным рассеивателем, находящимся на глубине Z=220 м.
Исходные данные и результаты компьютерного моделирования представлены в таблицах 1 3 и на фиг.2.
Таблица 1 | ||||
Известное ВРСЗ | ||||
ZiИ, м | 0 | 20 | 60 | 220 |
kiИ | - | 0,091 | 0,182 | 0,727 |
CiИ, м/с | 1450 | 1451 | 1430 | 1460 |
Здесь ZiИ , kiИ и CiИ - известные значения соответствующих величин.
По материалам банка океанографических данных для данного района моря были определены приближенные значения ZiП, kiП и CiП этих величин.
Таблица 2 | ||||
Приближенные значения ZiП, kiП и C iП | ||||
ZiП, м | 0 | 22 | 63 | 225 |
kiП=k i | - | 0,098 | 0,191 | 0,711 |
CiП, м/c | 1450 | 1455 | 1445 | 1450 |
По исходным данным таблицы 1 определялись для 4-х углов наклона характеристики направленности j четыре значения времен tj распространения акустического сигнала от источника-приемника звука ИП к рассеивателю Р и обратно до акустического приемника-источника звука ИП и далее с использованием исходных данных таблицы 2 на ЭВМ решалась система из 4-х уравнений.
Таблица 3 | ||||
Результаты компьютерного моделирования восстановления известного ВРСЗ | ||||
j, рад | /2 | /3 | /4 | /6 |
tj, с | 0.304653 | 0.351331 | 0.429181 | 0.602459 |
Zi, м | 0 | 21 | 63 | 220 |
Ci, м/с | 1450 | 1452,9 | 1429,7 | 1459,6 |
На фиг.2 представлены результаты компьютерного моделирования восстановления известного вертикального распределения скорости звука в море в графическом виде. Сплошной линией обозначен известный ВРСЗ, а штриховой линией - восстановленный ВРСЗ.
СПИСОК БИБЛИОГРАФИЧЕСКИХ ИСТОЧНИКОВ
1. А.с. 761845 СССР. G01H 5/00. 10.05.78. Устройство для измерения вертикального распределения скорости звука в жидких средах / Серавин Г.Н. Опубл. 07.09.80. Бюл. изобр. № 33.
2. А.с. 1585691 СССР. G01H 5/00. 22.04.88. Устройство для измерения вертикального распределения скорости звука в жидких средах / Наговицин В.А., Сысоев А.Г., Денисов А.Н., Фороща Е.С. Опубл. 15.08.90. Бюл. изобр. № 30.
3. А.с. 1460619 СССР. G01H 5/00. 08.08.87. Способ измерения распределения скорости звука в жидкой среде / Серавин Г.Н., Пономаренко А.П. Опубл. 23.02.89. Бюл. изобр. № 7.
4. Справочник по гидроакустике / Под ред. А.Е.Колесникова. Л.: Судостроение, 1982, 340 с.
Класс G01H5/00 Измерение скорости распространения ультразвуковых, звуковых или инфразвуковых колебаний