термоэлектрический преобразователь со щелочным металлом
Классы МПК: | H01J45/00 Разрядные приборы, работающие как термоэлектронные генераторы |
Автор(ы): | Каландаришвили Арнольд Галактионович (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" (RU) |
Приоритеты: |
подача заявки:
2011-04-04 публикация патента:
20.07.2012 |
Изобретение предназначено для повышения эффективности работы термоэлектрического преобразователя со щелочным металлом (АМТЕС), преобразующим тепловую энергию непосредственно в электрическую энергию. Изобретение может быть использовано как в наземных, так и в космических условиях как генератор, преобразующий различную тепловую энергию (солнечную, тепловых электростанций, ядерную и др.) с высоким КПД в электрическую энергию. Технический результат - повышение срока службы термоэлектрического преобразователя, стабильности его выходных электрических параметров за счет материалов и конструкции электродов и твердого электролита. Термоэлектрический преобразователь тепловой энергии в электрическую со щелочным металлом содержит в качестве твердого электролита ориентированный пиролитический графит интеркалированный щелочным металлом, С-ось которого перпендикулярна графитовым слоям и служит одновременно одним из электродов, второй электрод выполнен ив металла с открытой пористостью и размещен вблизи от твердого электролита в холодной области, а рабочим телом служат щелочные металлы: цезий, рубидий и калий. 1 з.п.ф-лы, 2 ил.
Формула изобретения
1. Термоэлектрический преобразователь со щелочным металлом, состоящий из средств подвода и отвода тепла, вакуумированного объема, разделенного твердым электролитом на две герметичные области, двух электродов с герметичными электрическими выводами на нагрузку, патрубка возврата жидкого конденсата щелочного металла из зоны конденсации в зону испарения с установленным на нем электромагнитным насосом, отличающийся тем, что в качестве твердого электролита используют ориентированный пиролитический графит, интеркалированный щелочным металлом, С-ось которого перпендикулярна графитовым слоям, являющийся одновременно одним из электродов, а второй электрод выполнен из металла с открытой пористостью, разделен с первым электродом межэлектродным промежутком и расположен со стороны зоны конденсации.
2. Термоэлектрический преобразователь по п.1, отличающийся тем, что в качестве щелочного металла используют цезий, или рубидий, или калий.
Описание изобретения к патенту
Изобретение относится к области энергетики, точнее к системам, преобразующим тепловую энергию (солнечную, тепловых электростанций, ядерную и др.) непосредственно в электрическую энергию как в наземных, так и в космических условиях, и может быть использовано для повышения эффективности работы одного из видов этого типа устройств, а именно, термоэлектрических преобразователей энергии (ТЭП) со щелочными металлами (далее - Alkali metal thermal to Electric Conversion (AMTEC).
Известны основополагающие работы (1. Патент США № 3458356, 1969, Thermo-Electric Generator, J.T.Kummer and N.Weber, 2. Thermoelectric Energy Conversion with Solid Electrolytes, Science, 1983, p.915, T.Cole), в которых описаны устройство и способ преобразования тепловой энергии непосредственно в электрическую.
Наиболее близким прототипом является термоэлектрический преобразователь со щелочным металлом (см. Патент США № 3458356, 1969, Thermo-Electric Generator, J.T.Kummer and N.Weber)
ТЭП со щелочным металлом представляет собой замкнутый вакуумный объем со средствами подачи и отвода тепла и разделенный твердым электролитом на две герметичные части - зоны испарения и конденсации рабочего тела. Зоны испарения и конденсации рабочего тела соединены патрубком с электромагнитным насосом. Твердый электролит с обеих сторон покрыт тонкопленочными пористыми металлическими электродами, которые с помощью электрических выводов через стенку устройства подсоединены к нагрузке. Твердый электролит представляет собой Al2O3,
(далее, BASE. - beta" - alumina solid electrolyte).
Рабочее тело - натрий заполняет область высокого давления ТЭП, которую поддерживают при температуре T2 в интервале 800 1300 K с помощью внешнего источника тепла. При этих температурах давление насыщенных паров натрия находится в интервале 0,05 2,5 атм. (5,0·103 2,5·105 Пa). Область низкого давления в основном содержит пар натрия и малое количество жидкого натрия и находится при температуре T1 в интервале 400 800 K, при которой производится давление пара натрия в интервале от 10-9 до 10-2 атм. (10 -4 до 103 Па).
Пар натрия из области с высоким давлением, диффундируя через пористые электроды и твердый электролит, попадает в область низкого давления, конденсируясь в жидкую фазу, которая затем с помощью электромагнитного наноса по патрубку возврата жидкого натрия возвращается в высокотемпературную область для рециркуляции через твердый электролит, тем самым замыкая циркуляционный контур и заканчивая рабочий цикл процесса.
Вначале цикла пар натрия при температуре T1 из зоны конденсации, попадая в высокотемпературную область, аккумулирует тепловую энергию до тех пор, пока не достигнет температуры Т2. Температура генерирует давление (химический потенциал) для силового движения ионов натрия сквозь твердый электролит по направлению к поверхности с низким давлением. В BASE натрий диффундирует только в виде как Na+ по реакции:
Эта реакция имеет место на интерфейсе жидкий натрий (пар) - BASE, когда натрий диффундирует через твердый электролит. Символ (Na+) BASE означает, что ион натрия является проводником в Al2O3.
При разомкнутом контуре ионы натрия благодаря термической кинетической энергии диффундируют по направлению к поверхности BASE, находящейся при низком давлении, принося туда положительный заряд. Достаточно сильное электрическое поле возникает на BASE и существует до тех пор, пока есть движение потока ионов натрия. Напряжение разомкнутой цепи дается уравнением Нернста для концентрационной ячейки:
Vэдc =RT2F-lln(P2/P4),
где R - газовая константа, F - число Фарадея, Р 2 - давление пара натрия при температуре Т2 и Р4 - давление пара натрия на пористом электроде, примыкающем к низкой области давления пара натрия.
Когда плотность тока через BASE равна нулю, P4 будет зависеть от давления пара натрия поверхности конденсации P 1 выражением:
P4(i=0)=P1 (T2/T1)1/2
Когда внешняя цепь замкнута, электроны проходят через нагрузку и нейтрализуют ионы натрия на пористом электроде низкого давления (обратное направление реакции 1). Далее уже нейтральные атомы натрия, обладая теплотой испарения, покидают пористый электрод, движутся через паровое пространство и выделяют теплоту конденсации при температуре T1.
Напряжение, которое возникает вдоль твердого электролита, является силой, которая двигает электроны через нагрузку, при которой совершается электрическая работа.
Основным недостатком термоэлектрического генератора со щелочным металлом (АМТЕС) является низкая стабильность тонкопленочных металлических электродов, связанная с коррозией материала, из-за наличия в окружающей электроды атмосфере активных составляющих: кислорода, водорода, углеводородов и др.
Технический результат - повышение срока службы термоэлектрического преобразователя, стабильности его выходных электрических параметров.
Для этого предложен термоэлектрический преобразователь со щелочным металлом. Состоящий из средств подвода и отвода тепла, вакуумированного объема, разделенного твердым электролитом на две герметичные области, двух электродов с герметичными электрическими выводами на нагрузку, патрубка возврата жидкого конденсата щелочного металла из зоны конденсации в зону испарения с установленным на нем электромагнитным насосом, при этом в качестве твердого электролита используют ориентированный пиролитический графит интеркалированный щелочным металлом, С-ось которого перпендикулярна графитовым слоям, являющийся одновременно одним из электродов, а второй электрод выполнен из металла с открытой пористостью, разделен с первым электродом межэлектродным промежутком и расположен со стороны зоны конденсации.
Кроме того, в качестве щелочного металла используют цезий или рубидий, или калий.
На фигурах 1 и 2 показан предлагаемый термоэлектрический преобразователь со щелочным металлом, который содержит следующие основные узлы:
1. Электрическая нагрузка, контур потребителя;
2. Высокотемпературная область (Температура 800 1300 K);
3. Металлокерамические электрические выводы электрод-нагрузка;
4. Изолятор из окиси алюминия;
5. Зона испарения щелочного металла;
6. Пар щелочного металла (цезий, рубидий, калий);
7. Твердый электролит (электрод) - ориентированный пиролитический графит, интеркалированный щелочным металлом, С-ось которого перпендикулярна графитовым слоям;
8. Патрубок для возврата жидкого конденсата щелочного металла из зоны конденсации в зону испарения;
9. Металлический электрод с открытой пористостью;
10. Изолятор из окиси алюминия;
11. Электромагнитный насос;
12. Зона испарения натрия из капиллярной структуры;
13. Низкотемпературная область (Температура 400 800 K).
Предлагаемый термоэлектрический преобразователь со щелочным металлом в качестве рабочего тела содержит в качестве твердого электролита 5 ориентированный пиролитический графит, интеркалированный щелочным металлом, С-ось которого перпендикулярна графитовым слоям. Твердый электролит служит одновременно одним из электродов, второй электрод 8 выполнен из металла с открытой пористостью и размещен вблизи от твердого электролита в низкотемпературной области. Рабочим телом служат щелочные металлы: цезий или рубидий, или калий.
Электроды разделены межэлектродным промежутком и изолированы от корпуса диэлектриком из окиси алюминия 4 и 10. Электрические контакты от обоих электродов выведены через металлокерамические выводы 3 через корпус изделия и подключены к внешней нагрузке 1.
Термоэлектрический преобразователь со щелочным металлом работает следующим образом. Рассмотрим работу устройства с рабочим телом, в качестве которого использован цезий. Использование рубидия и калия обусловлено их аналогичными цезию физико-химическими свойствами. Щелочные металлы цезий, рубидий и калий обладают низким потенциалом ионизации (3,89 eV - Cs, 4,34 eV - Rb, 5,14 eV - K в то время, как работа выхода электронов для графита равна 5,5 eV). Это позволяет нейтральным атомам щелочных металлов в нагретом состоянии, взаимодействуя с графитом, отдавать валентный электрон зоне проводимости графита, ионизироваться и затем внедряться между слоями графита (См. Каландаришвили А.Г. Источники рабочего тела для термоэмиссионных преобразователей энергии. - 2-е издание, доп., - Ж: Энергоатомиздат, 1993 г. - 304 с., с.183, а затем под действием перепада давления перемещаться из горячей в холодную зону, из которой они затем испаряются в виде ионов цезия. Далее они, перемещаясь, достигают металлического электрода с открытой пористостью, выполненный, например, из молибдена, вольфрама и др., где нейтрализуются и в дальнейшем в виде нейтральных атомов цезия достигают и адсорбируются в зоне конденсации. Содержание цезия в твердом электролите зависит от температуры графита и величины давления пара цезия над поверхностью графита и может управляться требуемым образом.
Разделение электродов и использование твердого электролита из графита, интеркалированного щелочным металлом, позволяет повысить стабильность и срок службы термоэлектрического преобразователя со щелочным металлом. Технический эффект достигается за счет исключения тонкопленочных пористых металлических электродов, подверженных постоянной коррозии, что приводит к нестабильности выходных электрических параметров преобразователя.
Класс H01J45/00 Разрядные приборы, работающие как термоэлектронные генераторы