диод ганна

Классы МПК:H01L47/02 приборы с эффектом Ганна
Автор(ы):, ,
Патентообладатель(и):Открытое акционерное общество "Научно-исследовательский институт полупроводниковых приборов" (ОАО "НИИПП") (RU)
Приоритеты:
подача заявки:
2011-04-01
публикация патента:

Изобретение относится к микроэлектронике. Диод Ганна включает активный слой с изменяющимся, вдоль электрического поля, уровнем легирования, при этом согласно изобретению толщина активного слоя диода Ганна изменяется в диапазоне (1.0-1.8) мк, уровень легирования носителей тока в активном слое равномерно изменяется от (1.1-1.4)* 1016 см-3, на первой границе активного слоя, до (1.8-2.4)*1016 см-3, на второй границе активного слоя. Изобретение обеспечивает минимизацию перепада уровня генерируемой СВЧ мощности при сохранении широкого диапазона перестройки частоты и высоком уровне мощности. 1 ил.

диод ганна, патент № 2456715

Формула изобретения

Диод Ганна, включающий активный слой с изменяющимся вдоль электрического поля уровнем легирования, отличающийся тем, что толщина активного слоя диода Ганна изменяется в диапазоне (1,0-1,8) мкм, уровень легирования носителей тока в активном слое равномерно изменяется от (1,1-1,4)·1016 см-3 на первой границе активного слоя до (1,8-2,4)·1016 см-3 на второй границе активного слоя.

Описание изобретения к патенту

Предлагаемое изобретение найдет применение при конструировании и промышленном выпуске диодов Ганна с широким СВЧ диапазоном перестройки, повышенными надежностью и выходной СВЧ мощностью.

Известна конструкция диода Ганна [1], включающая полупроводниковый активный элемент, состоящий из двух слоев высоколегированного GaAs, являющихся катодным и анодным контактами, и заключенного между ними активного слоя низколегированного GaAs. Одним контактом он соединен с теплоотводящим электродом корпуса диода Ганна, другим - с гибким металлическим проводником, который соединен с другим электродом корпуса диода Ганна. При подаче постоянного напряжения на диод Ганна в нем происходит образование движущихся доменов сильного поля, определяющих частоту генерации СВЧ генератора. В данном режиме (пролетный режим) частота СВЧ генерации определяется толщиной активного слоя и равна ~1/Т, где Т есть время движения домена сильного поля от катода к аноду. Частота СВЧ перестройки и выходная СВЧ мощность СВЧ генератора невелики и определяются толщиной активного слоя.

Недостатком данной конструкции является небольшой рабочий СВЧ диапазон, ограниченный пролетным режимом.

В работе [2] автор заявляет об отсутствии зависимости между рабочей СВЧ частотой и толщиной активного слоя низколегированного GaAs, что позволяет значительно увеличить как диапазон перестройки частоты СВЧ генерации, так и генерируемую выходную СВЧ мощность диода Ганна. В данном случае речь идет о так называемом режиме "Ограничения Накопления Пространственного Заряда" (ОНОЗ режим). В работе [3] обосновано требование к физическим параметрам полупроводникового материала GaAs, используемого для изготовления диодов Ганна, работающих в режиме ОНОЗ:

n=(2-20)*104*L, где:

n - уровень легирования активного слоя (1см3);

L - длина активного слоя (мк).

Диоды Ганна, изготовленные из полупроводникового GaAs материала с вышеописанными требованиями, не производятся электронной промышленностью.

В работах [4, 5] было проведено исследование работоспособности двух и более, последовательно соединенных, через промежуточные высоколегированные контактные слои, активных, низколегированных, рабочих слоев. В слое перехода между высоколегированным контактным катодным слоем и низколегированным рабочим слоем расположен слой так называемой «концентрационной зарубки» с пониженной, относительно активного слоя, концентрацией носителей тока (0.6-0.8)*1015 см-3 и толщиной ~0.2 мкм. Концентрация носителей тока в активных слое и их толщины соответственно равны ~1.5*1015 см-3 и ~1.3 мкм. На частоте ~50 ГГц от пяти, последовательно соединенных, активных рабочих слоев было получено более 2 Вт выходной СВЧ мощности. При этом кпд каждого отдельного активного слоя было равно ~(5-6)%.

Недостатком данной конструкции СВЧ генератора на последовательно соединенных диодах Ганна по-прежнему является небольшой диапазон СВЧ перестройки и высокое тепловое сопротивление.

Для уменьшения теплового сопротивления в работе [6] было предложено на общей полуизолирующей подложке формировать меза-структуры диодов Ганна и соединять их между собой последовательно, при этом их общая величина теплового сопротивления уменьшается в два и более раз, тем самым увеличивая надежность.

Однако диапазон СВЧ перестройки СВЧ генератора по-прежнему является небольшим.

В качестве прототипа нами принят диод Ганна с профилем легирования носителей тока в активном слое [7]. Толщина активного слоя равна 80 мк. Концентрация легирования носителей тока на границах активного слоя соответственно равна минимальному (1*1013 см-3) и максимальному (3*1013 см-3) значениям и линейно возрастает вдоль толщины от минимального до максимального значений. Данные параметры активного слоя позволяют, при изменении напряжения питания от 26 вольт до 37 вольт, изменять частоту СВЧ генерации от 26 ГГц до 6 ГГц соответственно. Данный эффект перестройки СВЧ генерации объясняется тем, что при изменении напряжения питания соответственно изменяется длина пролетной области, тем самым изменяя частоту СВЧ генерации.

Преобразование энергии постоянного тока в переменный происходит в пролетной области активного слоя. При максимальном напряжении питания пролетная область максимальна и равна толщине активного слоя, что соответствует максимальному преобразованию энергии. Так как длина пролетной области максимальна, частота СВЧ генерации будет минимальна. В данном случае она равна 6 ГГц. Уменьшение рабочего напряжения приводит к уменьшению длины пролетной области в активном слое, при этом соответственно частота выходной СВЧ генерации будет увеличиваться. В данной ситуации в части активного слоя напряженность электрического поля становится меньше величины порогового электрического поля возникновения неустойчивости. Эта часть активного слоя будет выполнять роль последовательно включенного паразитного сопротивления, на котором будет рассеиваться часть энергии. Это приведет к тому, что при повышении частоты СВЧ генерации будет происходить значительное уменьшение преобразования энергии постоянного электрического поля в переменное. Физически очевидно, что отношение максимального к минимальному значений генерируемых СВЧ мощностей пропорционально отношению толщин максимальной и минимальной пролетных областей. А при учете образуемого последовательно включенного паразитного сопротивления это отношение будет еще больше.

В данном случае перепад генерируемой СВЧ мощности в указанном диапазоне частот составляет шесть и более число раз, что является существенным недостатком диодов Ганна с данным профилем легирования.

Целью данного изобретения является минимизация перепада уровня генерируемой СВЧ мощности при сохранении широкого диапазона перестройки частоты и высоком уровне мощности.

Поставленная цель достигается одновременным выполнением следующих условий.

1. Значение толщины активного слоя диода Ганна расположено в диапазоне (1.0-1.8) мк.

2. Значения уровня легирования носителей тока в активном слое равномерно изменяется от (1.1-1.4)*1016 см-3, на первой границе активного слоя, до (1.8-2.4)*1016 см-3 , на второй границе активного слоя.

На первом этапе проведенных исследований была промоделирована работа диода Ганна в диапазоне частот от 10 ГГц до 50 ГГц. Результатом стала оптимизация параметров активного слоя с целью удовлетворения указанных требований: минимальный перепад мощности при максимальном диапазоне перестройки и максимально высоком уровне выходной СВЧ мощности. Результаты расчетов приведены на рис.1, кривая (а). Моделирование работы диода Ганна с предлагаемыми параметрами активного слоя показало:

1) толщина активного слоя должна быть не больше максимальной толщины образующегося домена;

2) градиент носителей тока в активном слое позволяет образовываться и формироваться стационарному домену до максимального значения в прикатодной области.

На втором этапе работы по вышеопределенным параметрам активного слоя были изготовлены диоды Ганна и проведено измерение выходной мощности и коэффициента полезного действия в диапазоне частот от 30 ГГц до 50 ГГц. Результаты приведены на рис.1, кривые (в, б). Для сравнения было проведено также измерение зависимости уровня СВЧ мощности от частоты для серийно выпускаемого диода Ганна типа 3А763М, по технологии которого были изготовлены предлагаемые диоды. Результат, представленный кривой (с) на фиг.1, показывает, что составило ~45%.

ВЫВОДЫ

1. Характер изменения расчетной (а) и экспериментальной (б) зависимостей КПД в диапазоне от 30 ГГц до 50 ГГц с точностью до ~0.5% совпадают.

2. Изменения генерируемой СВЧ мощности диодов Ганна в диапазоне от 30 ГГц до 50 ГГц (в), с предлагаемыми параметрами активного слоя, не превышают 6%; а уровень мощности соответствует расчетному.

3. По сравнению с серийно выпускаемыми диодами Ганна типа 3А763М использование предлагаемых параметров активного слоя позволило уменьшить перепад генерируемой ими СВЧ мощности ~ в 7 и более раз.

ЛИТЕРАТУРА

[1]. Пат. USA № 3422289, М.К. Н01К 3/26, от 1962 г.

[2]. Пат. USA № 3617940, М.К. Н01В 7/14, от 02.11.1971.

[3]. Шур М., "Современные приборы на основе арсенида галлия", Изд. "МИР", 1991 г., с.253.

[4]. Пат. GB № 2368717А, М.К. H01L 47/02, от 08.05.2002.

[5]. Electronics Letters, 18th July 2002, v.38, No. 15, p.830-831.

[6]. Пат. Japan № 01-168082, М. Кл. H01L 47/00, от 03.07.1989 г.

[7]. Пат. USA № 5256579, М. Кл. H01L 47/02, от 26.10.1993 г.

Класс H01L47/02 приборы с эффектом Ганна

полупроводниковый прибор с междолинным переносом электронов -  патент 2361324 (10.07.2009)
диод ганна (варианты) -  патент 2168801 (10.06.2001)
высокочастотный прибор на эффекте ганна -  патент 2091911 (27.09.1997)
высокочастотный прибор на эффекте ганна -  патент 2086051 (27.07.1997)
диод ганна -  патент 2064718 (27.07.1996)
высокочастотный прибор на эффекте ганна -  патент 2062533 (20.06.1996)
способ изготовления высокочастотного прибора на эффекте ганна с катодом с ограниченной инжекцией тока -  патент 2061277 (27.05.1996)
полупроводниковый прибор на эффекте ганна -  патент 2054213 (10.02.1996)
твердотельное устройство бегущей волны (варианты) -  патент 2037916 (19.06.1995)
высокочастотный прибор на эффекте ганна -  патент 2014673 (15.06.1994)
Наверх