способ получения мезопористого терефталата хрома(iii)

Классы МПК:C07F11/00 Соединения, содержащие элементы VI группы периодической системы Менделеева
Автор(ы):,
Патентообладатель(и):Российская Федерация, от имени которой выступает Министерство образования и науки Российской Федерации (RU),
Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева Сибирского отделения РАН (ИНХ СО РАН) (RU)
Приоритеты:
подача заявки:
2011-02-24
публикация патента:

Изобретение относится к способу получения мезопористого терефталата хрома(III), который может быть использован для создания гетерогенных катализаторов. Способ включает взаимодействие смеси нитрата хрома(III) и терефталевой кислоты в водном растворе при нагревании. Нагревание проводят в закрытом объеме со скоростью 1-1,5°/мин до 220°С с последующей выдержкой при этой температуре в течение 6 часов. После охлаждения до комнатной температуры полученный твердый продукт очищают последовательной обработкой горячими N,N-диметилформамидом и этанолом. Способ позволяет получать мезопористый терефталат хрома(III) с большим содержанием подвижных (лабильных) нитратных ионов, что обеспечивает большую сорбционную емкость анионных комплексов. 1 з.п. ф-лы, 3 ил., 1 пр.

способ получения мезопористого терефталата хрома(iii), патент № 2457213 способ получения мезопористого терефталата хрома(iii), патент № 2457213 способ получения мезопористого терефталата хрома(iii), патент № 2457213

Формула изобретения

1. Способ получения мезопористого терефталата хрома(III), включающий взаимодействие смеси нитрата хрома(III) и терефталевой кислоты в водном растворе при нагревании, отличающийся тем, что смесь нагревают в закрытом объеме со скоростью 1-1,5°/мин до 220°С с последующей выдержкой при этой температуре в течение 6 ч, охлаждают до комнатной температуры, полученный твердый продукт очищают последовательной обработкой горячими N,N-диметилформамидом и этанолом.

2. Способ получения мезопористого терефталата хрома(III) по п.1, отличающийся тем, что смесь предварительно обрабатывают ультразвуком, а охлаждение до комнатной температуры ведут в течение 2-2,5 ч.

Описание изобретения к патенту

Изобретение относится к химии и химической технологии, а именно к координационной и синтетической химии металлоорганических координационных полимеров, обладающих сорбционной емкостью, в частности получению терефталата хрома, и может быть использовано для создания гетерогенных катализаторов.

В химии металлоорганических координационных полимеров известен мезопористый терефталат хрома(III) MIL-101 состава [Cr3O(H 2O)2X(C8H4O4 )3]·nH2O (X=F, OH; nспособ получения мезопористого терефталата хрома(iii), патент № 2457213 25) [G. Férey et al.. Science, 2005, 2040], синтезируемый из нитрата хрома и терефталевой кислоты в водном растворе плавиковой кислоты при 220°C.

Описаны также способы синтеза аналогов MIL-101 в других реакционных условиях: из нитрата хрома и терефталевой кислоты в водном растворе с добавлением гидроксида тетраметаламмония при 180°C (MIL-101 ТМ), а также из системы нитрат хрома(Ш)-терефталевая кислота в водном растворе при 180°C (MIL-101 H2O) [J. Yang et al., Microporous Mesoporous Mater., 2010, 130, 174-179]. Однако в приведенных аналогах площади поверхностей ниже (для MIL-101H2O 2250 м2 /г) и не указаны составы полученных соединений.

Наиболее близким синтетическим методом является способ получения MIL-101, предложенный G.Férey [G.Férey et al., Science, 2005, 2040]. Способ синтеза - гидротермальный, из смеси нитрата хрома(III) и терефталевой кислоты в водном растворе плавиковой кислоты при 220°C. Мольное соотношение реагентов 1:1:1. В полученном соединении [Cr3O(H2O) 2X(C8H4O4)3 ]·nH2O (X=F, OH; nспособ получения мезопористого терефталата хрома(iii), патент № 2457213 25) определяется 0,8 атомов фтора на формульную единицу, оставшиеся 0,2 аниона на формульную единицу являются OH-группами. Выход в синтезе составляет порядка 50%. Полученный таким способом MIL-101 имеет площадь поверхности способ получения мезопористого терефталата хрома(iii), патент № 2457213 3800 м2/г. В структуре MIL-101 имеются два типа полостей диаметрами 29 и 34 А соответственно. Данный координационный полимер обладает хорошей термической (до 300°C) и гидролитической стабильностью.

Схематичное строение координационных полимеров Cr-MIL-101 и его аналогов (рис.1):

а) вторичный строительный блок, представляющий собой тетраэдр, в вершинах которого располагаются треугольные фрагменты Cr 3O, а по ребрам анионы терефталевой кислоты; б) цеолитоподобная топология каркаса с двумя типами полостей; в) малая полость с внутренним диаметром 30 Å и пентагональными окнами диаметром 11 Å; г) большая полость с внутренним диаметром 38 Å и гексагональными окнами диаметром 15 Å.

Данный способ синтеза позволяет получать высокопористое соединение, однако имеет следующие недостатки. В образующемся соединении всего 0,2 аниона на формульную единицу являются лабильными и способны вступать в реакции анионного обмена, например, с полиоксометаллатами. Полиоксометаллаты (ПОМ) являются хорошими катализаторами в реакциях жидкофазного селективного окисления. Их закрепление на различных носителях - способ создания новых эффективных гетерогенных катализаторов. MIL-101 позволяет включать до 4 ПОМ на полость из водных растворов. Однако лишь 0,5 ПОМ на полость включаются необратимо - не удаляется при промывании растворителем (органическим или водой).

Задачей изобретения является разработка способа получения мезопористого терефталата хрома(III) с большим содержанием подвижных (лабильных) нитратных ионов, что обеспечивает большую сорбционную емкость анионных комплексов.

Поставленная задача решается тем, что в способе получения мезопористого терефталата хрома(III), включающем взаимодействие смеси нитрата хрома(III) и терефталевой кислоты в водном растворе при нагревании, смесь нагревают в закрытом объеме со скоростью 1-1,5°/мин до 220°C с последующей выдержкой при этой температуре в течение 6 часов, охлаждают до комнатной температуры, полученный твердый продукт очищают последовательной обработкой горячими N,N-диметилформамидом и этанолом, а также тем, что смесь предварительно обрабатывают ультразвуком, а охлаждение до комнатной температуры ведут в течение 2-2,5 часов.

Отличительными признаками изобретения являются условия проведения процесса.

Нагревание смеси исходных компонентов до заданной температуры с контролируемой скоростью обусловлено тем, что при других режимах (скорости) нагрева смеси могут образовываться фазы другого состава, которую невозможно отделить, это влияет на чистоту полученного продукта и состав получаемого продукта - мезопористого терефталата хрома(III) с большим содержанием лабильных нитратных ионов. Время выдержки является оптимальным, так как при меньшей выдержке выход целевого продукта маленький, а при большой выдержке получают другую (микропористую) фазу. Охлаждение ведут медленно - это позволяет получать крупные кристаллы непрореагировавшей терефталевой кислоты, что позволяет лучше очистить целевой продукт от исходных реагентов. Предварительная обработка исходной смеси ультразвуком влияет на качество целевого продукта.

Сравнение данных порошковой рентгеновской дифракции для Cr-MIL-101, полученного по методу [G.Férey et al.. Science, 2005, 2040] (1) и по патентуемому методу (без фторид-ионов) (2) в наиболее характеристичной области малых углов доказывает изоструктурность Cr-MIL-101 и Cr-MIL-101FF (рис.2).

Подбор параметров синтеза позволяет получить мезопористый терефталат хрома(III) с большим содержанием лабильных нитратных ионов и, соответственно, с большей сорбционной емкостью по отношению к анионным комплексам. Полученный мезопористый терефталат хрома(III) позволяет включать до 4 полиоксометаллатов (ПОМ) на полость из водных растворов, при этом величина необратимого включения ПОМ для полученного предложенным способом составляет 2,7 на полость, что примерно в 5 раз выше, чем для прототипа MIL-101, что и обеспечивает большую сорбционную емкость анионных комплексов. На рис.3 представлено сравнение изотерм сорбции полиоксометаллата [PW12O 40]3- на Cr-MIL-101 (а) и Cr-MIL-101FF (б).

Таким образом, на мезопористом терефталате хрома(Ш) можно закрепить большее количество полиокосметаллатов, что важно для применения данного координационного полимера в качестве носителя для каталитически активных анионных комплексов.

Типичный пример

В Тефлоновом автоклаве смешивают нитрат хрома(III) Cr(NO3)3)·9H 2O (1,2 г, 3 ммоль), терефталевую кислоту (500 мг, 3 ммоль) и 15 мл воды. Смесь подвергают короткой обработке (5 мин) в ультразвуковой ванне до растворения кристаллов нитрата хрома, после чего помещают в стальную бомбу (автоклав), нагревают в печи с программируемым нагревом 1-1,5°/мин до 220°C, выдерживают при этой температуре 6 ч и в течение 2-2,5 часов охлаждают до комнатной температуры. Полученный твердый осадок отфильтровывают через крупный фильтр для удаления кристаллов непрореагировавшей терефталевой кислоты, а затем через мелкопористый бумажный фильтр. Для получения чистого продукта осадок подвергают двукратной обработке горячим N,N-диметилформамидом, а затем двукратной обработке кипящим этанолом для удаления терефталевой кислоты, находящейся в полостях продукта (Cr-MIL-101FF). Полученный продукт Cr-MIL-101FF имеет состав [Cr3O(H2O)2(NO3)(C 8H4O4)3]·nH2 O (n=13-15). Выход Cr-MIL-101FF составил около 0,5 г (выход 50%).

Таким образом использование предлагаемого способа получения мезопористого терефталата хрома(III) обеспечивает по сравнению с прототипом и существующими способами следующие преимущества: бóльшую необратимую сорбционную емкость по отношению к анионным комплексам, величина необратимого включения ПОМ для полученного MIL-101 FF, предложенным способом, составляет 2,7 на полость, что примерно в 5 раз выше чем для прототипа MIL-101.

Класс C07F11/00 Соединения, содержащие элементы VI группы периодической системы Менделеева

металлоценовое соединение, включающая его композиция катализатора и использующий его способ полимеризации олефина -  патент 2510646 (10.04.2014)
обратимый термохимический индикатор -  патент 2499800 (27.11.2013)
комплексное соединение самонамагничивающегося металла с саленом -  патент 2495045 (10.10.2013)
каталитическая композиция и способ олигомеризации этилена -  патент 2467797 (27.11.2012)
органические соединения молибдена и смазывающие композиции, которые содержат эти соединения -  патент 2458064 (10.08.2012)
органические соединения молибдена и смазывающие композиции, которые содержат указанные соединения -  патент 2456294 (20.07.2012)
молибденалкилксантогенаты и смазывающие композиции -  патент 2447080 (10.04.2012)
обратимый термоиндикатор на основе двойной комплексной соли -  патент 2443707 (27.02.2012)
способ синтеза элементоорганических соединений -  патент 2440355 (20.01.2012)
биядерные координационные соединения биологически активных d-элементов с алифатическими тиолами как средства повышения эффективности лекарственных препаратов -  патент 2417999 (10.05.2011)
Наверх