ингибитор коррозии
Классы МПК: | C23F11/167 фосфорсодержащие соединения |
Автор(ы): | Бусыгин Владимир Михайлович (RU), Погребцов Валерий Павлович (RU), Сафин Дамир Хасанович (RU), Хасанова Диляра Ильгизовна (RU), Макаров Геннадий Михайлович (RU), Краснов Вячеслав Николаевич (RU) |
Патентообладатель(и): | Открытое акционерное общество "Нижнекамскнефтехим" (RU) |
Приоритеты: |
подача заявки:
2010-12-13 публикация патента:
10.08.2012 |
Изобретение относится к области защиты металлов от коррозии и может быть использовано в системах оборотного водоснабжения и теплоснабжения химических, нефтехимических, энергетических и других промышленных предприятий. Ингибитор включает смесь ортофосфатов и триполифосфатов щелочных металлов, оксиэтилидендифосфонаты и/или нитрилотриметилфосфонаты щелочных металлов и аскорбиновую и/или глюконовую кислоту с содержанием от 0,05 до 5,00% мас. по отношению к общей массе. Технический результат: создание ингибитора коррозии, обладающего высокой эффективностью защиты от коррозии технологического оборудования в водных средах различной минерализации с широким интервалом значений водородного показателя. 4 з.п. ф-лы, 3 табл., 23 пр.
Формула изобретения
1. Ингибитор коррозии для минерализованных водных сред, включающий смесь ортофосфатов и триполифосфатов щелочных металлов, оксиэтилидендифосфонаты и/или нитрилотриметилфосфонаты щелочных металлов и аскорбиновую и/или глюконовую кислоту с содержанием от 0,05 до 5,00 мас.% по отношению к общей массе.
2. Ингибитор коррозии по п.1, отличающийся тем, что он содержит фосфатных соединений от 5 до 60 мас.% по отношению к общей массе.
3. Ингибитор коррозии по п.1, отличающийся тем, что он содержит фосфонатных соединений от 1 до 15 мас.% по отношению к общей массе.
4. Ингибитор коррозии по п.1, отличающийся тем, что он дополнительно содержит от 0,01 до 2,00 мас.% оксиэтилидендифосфоната цинка.
5. Ингибитор коррозии по п.1, отличающийся тем, что он дополнительно содержит от 0,05 до 5,00 мас.% бензотриазола и/или толилтриазола по отношению к общей массе.
Описание изобретения к патенту
Изобретение относится к ингибиторам коррозии и может быть использовано в системах оборотного водоснабжения и теплоснабжения химических, нефтехимических, энергетических и других промышленных предприятий.
Известно применение в качестве ингибитора коррозии в системах оборотного водоснабжения состава, содержащего оксиэтилидендифосфоновую кислоту, триполифосфат натрия, неионогенное поверхностно-активное вещество ПЭГ-300, сульфат цинка (Патент РФ № 2128628, МПК C02F 5/00, опубл. 10.04.1999). Данный ингибитор предлагается использовать путем введения в системы водооборота отдельных компонентов в твердой форме, что усложняет режим подбора эффективного режима ингибирования и не обеспечивает быстрого равномерного распределения реагентов в системе. Недостатком указанного ингибитора является применение, в основном, в низкоминерализованных водных средах (общее солесодержание 600-850 мг/дм3 ).
Известен ингибитор коррозии и солеотложения (Патент РФ № 2256727, МПК C23F 11/167, опубл. 20.07.2005), включающий фосфатный ингибитор, фосфонатный ингибитор, безводную гигроскопическую соль щелочных или щелочноземельных металлов неорганических кислот (сульфаты и карбонаты натрия, калия, кальция, ортофосфаты щелочных металлов). Указанный ингибитор коррозии в системах оборотного водоснабжения используется совместно с ингибитором солеотложений на основе водорастворимых акрилатов с молекулярной массой 3000-20000, неионогенных ПАВ, выбранных из ряда полиоксиэтилированных эфиров жирных кислот, спиртов, аминов, алкилфенолов. Данную композицию ингибитора коррозии и солеотложений предлагается производить в таблетированном виде.
Недостатком данного ингибитора коррозии и солеотложений является необходимость дозировки его в системы водооборота в таблетированной твердой форме, что не обеспечивает своевременного и равномерного распределения ингибитора в системе. При этом в зоне растворения реагентов образуется высокая концентрация фосфатов, что может привести к выпадению фосфатного шлама в минерализованной водной среде. Кроме этого в составе ингибитора содержатся вещества, увеличивающие минерализацию оборотной воды и возможность образования накипи, в частности сульфаты и карбонаты. Сульфаты могут образовать растворимые сульфаты железа (II), подкисляющие воду, стимулируя локальную коррозию, а в анаэробных условиях сульфаты легко перерабатываются сульфидирующими бактериями в сульфиды, что может вызвать биокоррозию и биообрастание технологического оборудования.
Наиболее близким по технической сущности к предлагаемому ингибитору коррозии является состав, содержащий фосфат натрия, гексаметафосфат натрия, пирофосфат натрия, пирофосфорную кислоту или ее водорастворимую соль (Патент UA 42519, МПК C02F 5/00, опубл. 15.10.2001). Для повышения эффективности защиты от коррозии цветных металлов в его состав дополнительно вводят бензотриазол. Указанный ингибитор коррозии в системах оборотного водоснабжения применяется совместно с диспергатором на основе полиакрилатов с молекулярной массой от 3000 до 10000.
Недостатком данного состава является низкая эффективность коррозионной защиты используемого оборудования и нестабильность ингибированной системы в высокоминерализованных водных средах и при изменениях рН среды.
Задачей данного изобретения является создание ингибитора коррозии, обладающего высокой эффективностью защиты от коррозии технологического оборудования в водных средах различной минерализации с широким интервалом значений водородного показателя.
Поставленная задача решается тем, что ингибитор коррозии для водных минерализованных сред включает смесь ортофосфатов и триполифосфатов щелочных металлов, оксиэтилидендифосфонаты и/или нитрилотриметилфосфонаты щелочных металлов, аскорбиновую и/или глюконовую кислоту с содержанием от 0,05 до 5 мас.% по отношению к общей массе аскорбиновой и/или глюконовой кислоты.
Ингибитор может содержать от 5 до 60 мас.% по отношению к общей массе фосфатных соединений.
Ингибитор может содержать от 1 до 15 мас.% по отношению к общей массе фосфонатных соединений.
Ингибитор может дополнительно содержать бензотриазол и/или толилтриазол в количестве 0,05-5 мас.%.
Ингибитор может дополнительно содержать оксиэтилидендифосфонат цинка в количестве 0,01-2 мас.%.
Предлагаемый ингибитор коррозии, содержащий фосфаты, фосфонаты, аскорбиновую и/или глюконовую кислоты позволяет обеспечивать высокую антикоррозионную защиту технологического оборудования, эксплуатируемого в условиях минерализованных водных сред при различных значениях рН.
Фосфатные соединения обеспечивают основную защиту материалов из углеродистой стали от коррозии и в предлагаемом ингибиторе коррозии они состоят из ортофосфатов и триполифосфата щелочных металлов.
Фосфонатные соединения повышают эффективность ингибирования коррозии углеродистой стали в водах с низкой минерализацией. В качестве фосфонатных соединений используют оксиэтилидендифосфонаты и/или нитрилотриметилфосфонаты щелочных металлов.
Аскорбиновая и/или глюконовая кислота в предложенном составе позволяет улучшить защитные свойства ингибитора коррозии. Кроме того, они выполняют функцию диспергаторов железооксидных отложений и способствуют их отмывке. Аскорбиновая и/или глюконовая кислота в составе заявляемого ингибитора коррозии ускоряет процесс образования пассивационной пленки на поверхности металла.
Введение в состав ингибитора добавки оксиэтилидендифосфоната цинка и специальных ингибиторов цветных металлов в виде бензотриазола и/или толилтриазола позволяет повысить эффективность ингибитора коррозии.
Оценку эффективности предлагаемого ингибитора коррозии проводят с использованием низко- и высокоминерализованных водных сред. Оценку антикоррозионных свойств композиции ингибиторов коррозии проводят на образцах из углеродистой стали (Ст3) в соответствии с ГОСТ 9.502-82 и латуни марки Л-63. Испытания проводят при постоянном перемешивании среды при температуре 50°С в условиях естественной аэрации и экспозиции в течение 5 часов. Ингибитор коррозии испытывают гравиметрическим методом на образцах металлов с использованием искусственных водных сред низкой минерализации и высокой минерализации следующего состава: низкая минерализация - общее солесодержание 1200 мг/дм3, щелочность - 2,1 мэкв/дм3; карбонатная жесткость - 7,2 мэкв/дм3; хлориды - 76 мг/дм3; сульфаты - 324 мг/дм3; высокая минерализация - общее солесодержание 3000 мг/дм3, щелочность - 5,7 мэкв/дм3, карбонатная жесткость - 18,2 мэкв/дм3; хлориды - 190 мг/дм3, сульфаты - 810 мг/дм3.
Подготовку образцов до испытаний и обработку их после испытаний проводят согласно ГОСТ 9-905-82. Для получения каждого значения скорости коррозии гравиметрическим методом используют три образца. Скорость коррозии (г/м2 ·ч) оценивают по потери массы образцов, помещенных в коррозионную среду за время испытаний в трех параллельных сериях:
=(m0-m1)/S ,
где m0 и m1 - масса образцов, соответственно, до и после испытаний, г;
S - общая площадь образцов, м2;
- время, ч.
Защитное действие ингибитора коррозии или эффективность ингибирования (Z, %) вычисляют по формуле:
Z=( P- P1)/ P·100, %,
где Р - коррозионные потери массы образца в контрольной среде, г;
P1 - коррозионные потери массы образца в ингибированной среде, г.
Эффективность ингибирования коррозии определяют при варьировании значения рН водных сред в пределах 6,5-9,0 и дозировке ингибитора коррозии 80 мг/дм3.
Оценка эффективности предлагаемого ингибитора коррозии также проведена совместно с определением эффективности известных ингибиторов солеотложений на примере концентрированной Камской воды следующего состава: общее солесодержание 2900 мг/дм 3, щелочность - 6,1 мэкв/дм3; карбонатная жесткость - 17,8 мэкв/дм3; хлориды - 206 мг/дм3; сульфаты - 384 мг/дм3, рН составляет 7.4. Испытания проводят при температуре 70°С в условиях естественной аэрации и экспозиции в течение 96 часов. Подготовку образцов металлов и определение скорости коррозии проводят аналогично опытам на модельных водных средах. При проведении этих опытах в испытуемую воду кроме ингибитора коррозии дополнительно вводился ингибитор солеотложений - диспергатор. В качестве указанного диспергатора использовалась известная композиция реагента «Acumer 3100» на основе водорастворимых акрилатов с молекулярной массой 3000-4500 и оксиэтилированного нонилфенола марки «Неонол АФ9-12». Концентрат ингибитора солеотложений - диспергатора содержит 25 мас.% реагента «Acumer 3100» и 15 мас.% неонола АФ9-12 и его дозировка меняется в пределах 30-60 мг/дм3.
Эффективность ингибирования солеотложений карбоната кальция рассчитывают по формуле:
Э=(Си -Сx)/(Со-Сx)·100, %,
где Со - содержание ионов анализируемого вещества в исходной пробе;
Си и С x - содержание ионов анализируемого вещества в пробах с добавлением ингибитора и без него после термостатирования.
Предлагаемый ингибитор коррозии готовят следующим образом. В обессоленной воде растворяют алкиленфосфоновую кислоту при температуре 40-50°С и перемешивают с водным раствором основания. В полученный раствор при перемешивании вводят соли фосфатов и аскорбиновую и/или глюконовую кислоты.
Осуществление изобретения иллюстрируют следующие примеры, содержащие условия приготовления ингибитора коррозии и условия его испытаний.
Пример 1
В лабораторную колбу объемом 250 мл заливают 88,5 мл обессоленной воды, содержимое нагревают до 45-47°С и растворяют 10,3 г оксиэтилидендифосфоновой кислоты, при перемешивании в раствор добавляют 19,6 г 40%-ного раствора гидроксида калия. Затем в полученный раствор вводят 64,6 г ортофосфата калия и 16,1 г триполифосфата натрия. После тщательного перемешивания содержимого добавляют аскорбиновую кислоту. Эффективность приготовленного ингибитора коррозии определяют на образцах низкоминерализованной воды и высокоминерализованной воды (рН значение варьируют в пределах 6,5-9,0). Испытание проводят на образцах углеродистой стали Ст3 и латуни Л-63. Дозировка ингибитора коррозии составляет 80 мг/дм3. Эффективность ингибирования стали 3 составляет на низкоминерализованной воде при рН 6,5 - 88,6%, на высокоминерализованной воде при рН 9,0 - 90,5%; латуни на низкоминерализованной воде при рН 7,0 - 90,0%, на высокоминерализованной воде при рН 9,0 - 88,8%.
Дополнительно проводят испытание ингибитора коррозии совместно с ингибитором солеотложений - диспергатором на основе водного раствора водорастворимого полиакрилата «Acumer-3100» - 25 мас.% и неонола АФ9-12 - 15 мас.% с использованием концентрированной Камской воды следующими показателями: общее солесодержание 2900 мг/дм3, щелочность - 6,1 мэкв/дм3; карбонатная жесткость - 17,8 мэкв/дм 3; хлориды - 206 мг/дм3; сульфаты - 384 мг/дм 3; рН-значение, равное 7,4. При этом дозировка ингибитора коррозии составляет 80 мг/дм3 и ингибитора солеотложений 30 мг/дм3. Эффективность ингибирования стали составляет 96,1%, латуни - 96,4%, ингибирования солеотложений - 97,2%.
Пример 2
Приготовление ингибитора коррозии и его испытания проводят аналогично примеру 1. В лабораторную колбу объемом 250 мл заливают 70 мл обессоленной воды, содержимое нагревают до 50°С, растворяют 12 г оксиэтилидендифосфоновой кислоты и 22.7 г 40%-ного раствора гидроксида калия. После этого в раствор дополнительно вводят 57 г ортофосфата калия и 13.5 г триполифосфата натрия. После тщательного перемешивания раствора добавляют глюконовую кислоту. Оценку эффективности приготовленного ингибитора проводят аналогично примеру 1. Эффективность ингибирования стали 3 составляет на низкоминерализованной воде при рН 6,5 - 90,2%, на высокоминерализованной воде при рН 9,0 - 89,4%; латуни на низкоминерализованной воде при рН 7,0 - 91,1%, на высокоминерализованной воде при рН 9,0 - 92,0%.
Испытание ингибитора коррозии совместно с ингибитором солеотложений проводят аналогично примеру 1. Эффективность ингибирования стали составляет 95,4%, латуни - 96,1%, ингибирования солеотложений - 96,7%.
Пример 3
Приготовление ингибитора коррозии и его испытания проводят аналогично примеру 1. В колбу объемом 250 мл заливают 80 мл воды. После нагрева содержимого колбы до 47-49°С растворяют 16.0 г оксиэитилидендифосфоновой кислоты и 27.8 г 40%-ного раствора гидроксида калия. После тщательного перемешивания вводят 70 г ортофосфата калия и 17.6 г триполифосфата натрия. Затем в растворе растворяют аскорбиновую кислоту и глюконовую кислоту.
Эффективность ингибирования стали 3 составляет на низкоминерализованной воде при рН 6,5 - 88,9%, на высокоминерализованной воде при рН 9,0 - 90,8%; латуни на низкоминерализованной воде при рН 7,0 - 91,4%, на высокоминерализованной воде при рН 9,0 - 89,5%.
Испытание ингибитора коррозии совместно с ингибитором солеотложений проводят аналогично примеру 1. Эффективность ингибирования стали составляет 96,5%, латуни - 95,1%, ингибирования солеотложений - 97,5%.
Примеры 4-23
Приготовление ингибитора коррозии и его испытания проводят аналогично примеру 1. Состав ингибитора коррозии представлен в таблице 1, полученные результаты по эффективности ингибирования показаны в таблицах 2-3.
Анализ полученных результатов показывает, что предлагаемый ингибитор коррозии для минерализованных водных сред, содержащий в составе фосфаты, фосфонаты и акорбиновую и/или глюконовую кислоты, имеет высокую эффективность ингибирования коррозии материалов из углеродистой стали и латуни в водных системах низкой и высокой минерализации при широком интервале значений водородного показателя (данные таблицы 2). Указанный ингибитор пригоден для промышленного применения. Так, проведенные испытания данного ингибитора коррозии совместно с известными ингибиторами солеотложений на основе водорастворимых акрилатов и поверхностно-активного вещества на основе неонола АФ 9-12 на примере концентрированного образца Камской воды (данные таблицы 3) подтверждают его высокие защитные свойства материалов на основе углеродистой стали и латуни.
Класс C23F11/167 фосфорсодержащие соединения