дифракционный оптический элемент для формирования нерасходящегося светового пятна при плоской поляризации падающего излучения

Классы МПК:G02B27/42 дифракционная оптика
Автор(ы):, ,
Патентообладатель(и):Учреждение Российской академии наук Институт систем обработки изображений РАН (ИСОИ РАН) (RU)
Приоритеты:
подача заявки:
2010-11-25
публикация патента:

Дифракционный оптический элемент представляет собой тонкую пластинку. На одну из поверхностей пластинки нанесен микрорельеф в виде круговой дифракционной решетки с прямоугольным профилем. Период дифракционной решетки близок к длине волны. Дифракционный оптический элемент выполнен из двух секций, расположенных по разные стороны от линии диаметра, перпендикулярной плоскости поляризации. Кольцевые зоны в одной секции имеют сдвиг на половину периода круговой решетки по отношению к кольцевым зонам в другой секции. Технический результат - уменьшение размера светового пятна до субволновых размеров, а также снижение асимметрии пятна. 3 ил. дифракционный оптический элемент для формирования нерасходящегося   светового пятна при плоской поляризации падающего излучения, патент № 2458372

дифракционный оптический элемент для формирования нерасходящегося   светового пятна при плоской поляризации падающего излучения, патент № 2458372 дифракционный оптический элемент для формирования нерасходящегося   светового пятна при плоской поляризации падающего излучения, патент № 2458372

Формула изобретения

Дифракционный оптический элемент для формирования нерасходящегося светового пятна при плоской поляризации падающего света, представляющий собой тонкую пластинку, на одну из поверхностей которой нанесен микрорельеф в виде круговой дифракционной решетки с прямоугольным профилем и периодом, близким к длине волны, отличающийся тем, что выполнен из двух секций, расположенных по разные стороны от линии диаметра, перпендикулярной плоскости поляризации, причем кольцевые зоны в одной секции имеют сдвиг на половину периода круговой решетки по отношению к кольцевым зонам в другой секции.

Описание изобретения к патенту

Изобретение относится к области лазерной оптики, а именно к острой фокусировке когерентного излучения, и может быть использовано для высокоразрешающей оптической записи и сканирующей оптической микроскопии.

Известны дифракционные оптические элементы для генерации нерасходящихся лазерных пучков (см. А.Vasara, J.Turunen, A.Fridberg, "Realization of general nondiffracting beams with computer-generated holograms", JOSA A / vol.6, № 11 / November 1989) на основе амплитудных бинарных круговых дифракционных решеток, записанных как с несущей частотой, так и без несущей. Также в данной работе реализован фазовый четырехуровневый элемент.

Бинарные амплитудные элементы обладают низкой энергетической эффективностью в силу амплитудного характера пропускания, а также имеют провал в центральном пике формируемого распределения. Фазовый четырехуровневый элемент имеет более высокую энергетическую эффективность, и провал в центральном пике отсутствует, однако в силу низкой числовой апертуры этого элемента центральный пик достаточно широкий, ширина составляет несколько длин волн.

Наиболее близок по сущности к заявляемому высокоапертурный дифракционный оптический элемент (P.Vahimaa et. al., "Electromagnetic analysis of nonparaxial Bessel beams generated by diffraction axicons", JOSA A / Vol.14, № 8 / August 1997), представляющий собой тонкую пластинку на одну из поверхностей которой нанесен микрорельеф в виде круговой дифракционной решетки с прямоугольным профилем и периодом, близким к длине волны.

Такой дифракционный оптический элемент обеспечивает формирование нерасходящегося светового пятна на оптической оси, однако при линейной поляризации падающего излучения уменьшение периода решетки до субволновых размеров не дает уменьшения диаметра сформированного светового пятна, а лишь приводит к появлению асимметрии сформированного пятна.

В основу изобретения поставлена задача уменьшения диаметра нерасходящегося светового пятна до субволновых размеров при линейной поляризации падающего излучения.

Данная задача решается за счет того, что дифракционный оптический элемент для формирования нерасходящегося светового пятна при плоской поляризации падающего света, представляющий собой тонкую пластинку, на одну из поверхностей которой нанесен микрорельеф в виде круговой дифракционной решетки с прямоугольным профилем и периодом, близким к длине волны, выполнен из двух секций, расположенных по разные стороны от линии диаметра, перпендикулярной плоскости поляризации, причем кольцевые зоны в одной секции имеют сдвиг на половину периода круговой решетки по отношению к кольцевым зонам в другой секции.

На фиг.1 представлен общий вид дифракционного оптического элемента в плане,

на фиг.2 - сравнительная схема прохождения излучения и суммирования компонент,

а - прототип, б - предлагаемое изобретение.

На поверхности тонкой пластинки 1 располагаются кольцевые зоны 2. Соседние зоны отличаются по высоте на величину, обеспечивающую сдвиг фаз прошедшего излучения на дифракционный оптический элемент для формирования нерасходящегося   светового пятна при плоской поляризации падающего излучения, патент № 2458372 /2. Поверхность дифракционного оптического элемента разделена на две секции 3 и 4 линией диаметра. Кольцевые зоны одной секции имеют сдвиг на половину периода круговой решетки по отношению к кольцевым зонам в другой секции. Это означает, что зона, являющаяся выступом в одной секции, переходит во впадину в другой секции. Принцип действия дифракционного оптического элемента основан на фазовом сдвиге излучения, прошедшего через одну секцию, по отношению к излучению, прошедшему через другую секцию. При суммировании первых порядков дифракции излучения, прошедшего через разные секции, такой фазовый сдвиг обеспечивает усиление продольной компоненты электромагнитного излучения при условии перпендикулярности линии раздела секций плоскости поляризации падающего излучения. Продольная компонента электромагнитного поля для высокоапертурных оптических элементов гораздо мощнее и больше локализована на оптической оси, чем поперечные компоненты электромагнитного поля. Таким образом, превалирование продольной компоненты приводит к уменьшению диаметра центрального пятна у высокоапертурных оптических элементов.

Работает дифракционный оптический элемент следующим образом: оптическое излучение с плоским волновым фронтом и линейной поляризацией освещает поверхность тонкой пластинки 1, на которой располагаются кольцевые зоны 2, причем плоскость поляризации излучения перпендикулярна линии раздела секций дифракционного оптического элемента 3 и 4. Из-за сдвига кольцевых зон одной секции дифракционного оптического элемента относительно кольцевых зон другой происходит фазовый сдвиг излучения, прошедшего через одну секцию дифракционного оптического элемента, относительно излучения, прошедшего через другую секцию. Прошедшее через обе секции излучение суммируется вблизи оптической оси таким образом, что в отличие от прототипа происходит усиление продольной компоненты электромагнитного поля и ослабление поперечных компонент. Из фиг.2 понятно, что такое суммирование возможно лишь для плоскополяризованного излучения, причем плоскость поляризации должна быть перпендикулярна линии раздела секций дифракционного оптического элемента, являющегося предлагаемым изобретением.

Как следует из описания предлагаемого изобретения, по сравнению с прототипом обеспечивается уменьшение размера светового пятна на оптической оси до субволновых размеров, а также снижается асимметрия пятна за счет ослабления поперечных компонент электромагнитного поля.

Класс G02B27/42 дифракционная оптика

дифракционное профилирование распределения интенсивности частично пространственно когерентного светового пучка -  патент 2343516 (10.01.2009)
способ формирования стереоизображений -  патент 2337386 (27.10.2008)
устройство для преобразования электромагнитного излучения в когерентную форму -  патент 2312384 (10.12.2007)
световая панель -  патент 2237932 (10.10.2004)
световой индикатор -  патент 2237931 (10.10.2004)
способ определения группы рассеивающих частиц в оптически прозрачных средах -  патент 2236032 (10.09.2004)
способ определения расстояния до источника излучения -  патент 2179707 (20.02.2002)
способ формирования оптического изображения в некогерентном свете и устройство для его осуществления (варианты) -  патент 2179336 (10.02.2002)
спектральный уплотнитель-делитель каналов с дифракционной решеткой -  патент 2018162 (15.08.1994)
Наверх