способ изготовления внутрикостного стоматологического имплантата с ионно-лучевой модификацией плазмонапыленного многослойного биоактивного покрытия

Классы МПК:A61L27/02 неорганические материалы
A61C8/00 Приспособления, прикрепляемые к челюсти, для укрепления естественных зубов или для крепления зубных протезов; зубные имплантаты; инструменты для имплантации
C23C14/00 Покрытие вакуумным испарением, распылением металлов или ионным внедрением материала, образующего покрытие
C23C14/58 последующая обработка
Автор(ы):, , ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет" (СГТУ) (RU)
Приоритеты:
подача заявки:
2011-03-17
публикация патента:

Изобретение относится к области медицины, а именно к ортопедической стоматологии, и может быть использовано при изготовлении внутрикостных имплантатов путем нанесения на их металлическую основу многослойных плазменных покрытий с последующей ионно-лучевой модификацией. Предлагаемый способ изготовления внутрикостного имплантата включает пескоструйную обработку поверхности имплантата частицами оксида алюминия, послойное напыление плазменным методом на основу имплантата системы биосовместимых покрытий различной дисперсности и толщины, состоящей из пяти слоев: первых двух из титана или гидрида титана, последующих двух слоев из смеси титана или гидрида титана с гидроксиапатитом кальция, отличающихся содержанием компонентов в слоях, и пятого слоя из гидроксиапатита кальция, после чего многослойную систему биосовместимых покрытий облучают в вакуумной среде углеводородного газа высокоэнергетическими ионами инертного газа с энергией 40-130 кэВ и дозой облучения 2000-5000 мкКл/см2. Способ обеспечивает повышение биоактивности и механической прочности имплантата. 2 табл., 2 ил.

способ изготовления внутрикостного стоматологического имплантата   с ионно-лучевой модификацией плазмонапыленного многослойного   биоактивного покрытия, патент № 2458707 способ изготовления внутрикостного стоматологического имплантата   с ионно-лучевой модификацией плазмонапыленного многослойного   биоактивного покрытия, патент № 2458707

Формула изобретения

Способ изготовления внутрикостного стоматологического имплантата с ионно-лучевой модификацией плазмонапыленного многослойного биосовместимого покрытия, включающий пескоструйную обработку поверхности имплантата частицами оксида алюминия, послойное напыление плазменным методом на основу имплантата системы биосовместимых покрытий из смеси порошков титана или гидрида титана и гидроксиапатита кальция, при этом первым слоем напыляют титан или гидрид титана дисперсностью 3-5 мкм с дистанцией напыления 70-80 мм и толщиной 5-10 мкм, вторым слоем - титан или гидрид титана дисперсностью 50-100 мкм с дистанцией напыления 100 мм, толщиной 15-20 мкм, третьим слоем напыляют смесью титана или гидрида титана дисперсностью 50-100 мкм и гидроксиапатита кальция дисперсностью 5-10 мкм, с соотношением 70-80 и 30-20 мас.% соответственно, с дистанцией напыления 90-100 мм и толщиной слоя 30-50 мкм, четвертым слоем -смесь титана или гидрида титана дисперсностью 50-100 мкм и гидроксиапатита кальция дисперсностью 20-40 мкм, с соотношением 50-60 и 50-40 мас.% соответственно, с дистанцией напыления 80-85 мм и толщиной 30-50 мкм, пятым слоем напыляют гидроксиапатит кальция дисперсностью 40-70 мкм с дистанцией напыления 70 мм и толщиной слоя 20-30 мкм, отличающийся тем, что многослойную систему биосовместимых покрытий облучают в вакуумной среде углеводородного газа высокоэнергетическими ионами инертного газа с энергией 40-130 кэВ и дозой облучения 2000-5000 мкКл/см2.

Описание изобретения к патенту

Изобретение относится к области медицинской техники, а именно к ортопедической стоматологии, и может быть использовано при изготовлении внутрикостных имплантатов путем нанесения на их металлическую основу многослойных плазменных покрытий с последующей ионно-лучевой модификацией.

Известен способ изготовления внутрикостных стоматологических имплантатов с биоактивным покрытием [патент РФ № 2074674, МПК: A61F 2/28], включающий изготовление из металла или сплава универсальным способом (токарная, фрезерная и др. методы обработки или с помощью специальных электрофизических методов) основы имплантата цилиндрической, пластинчатой или трубчатой формы, нанесение на основу имплантата методом плазменного напыления системы покрытий из четырех слоев - двух слоев титана или гидрида титана различной дисперсности и толщины, третьего слоя из механической смеси титана или гидрида титана, или гидроксиапатита с соотношением соответственно 60-80 мас.% и 20-40 мас.% и наружного слоя - гидроксиапатита.

Недостатком данного изобретения является невысокая биосовместимость и хрупкость покрытия.

Известен способ изготовления имплантата для замены костной ткани [патент РФ № 2025132, МПК A61F 2/28], согласно которому на имплантат, выполненный из металлического или металл-керамического сплава в виде штифта, наносят трехслойное покрытие, при этом первый слой содержит биостекло на основе фосфата кальция с добавлением оксидов металлов, второй слой - смесь фосфата кальция и гидроксиапатита, а промежуточный слой содержит фосфат кальция.

Однако многокомпонентная система покрытий (СаР-стекло, гидроксиапатит кальция, трикальцийфосфат и добавки оксидов металлов) с различными коэффициентами термического расширения не способствует прочному закреплению слоев покрытия (особенно первого слоя) с металлической основной имплантата, покрытие также не обладает высокой биоактивностью.

Наиболее близким к предлагаемому изобретению является способ изготовления внутрикостного стоматологического имплантата с плазмонапыленным многослойным биоактивным покрытием [патент РФ № 2146535, МПК A61L 27/00, А61С 8/00], состоящий в напылении плазменным методом на титановую основу имплантата системы покрытий различной дисперсности и толщины, состоящей из пяти слоев: первых двух из титана или гидрида титана, последующих двух слоев из смеси титана или гидрида титана с гидроксиапатитом кальция, отличающихся содержанием компонентов в слоях, и наружного, пятого слоя из гидроксиапатита кальция. Напыление ведут послойно при различных режимах, обеспечивающих плавный переход от компактной структуры титановой основы имплантата через многослойную систему переходного покрытия к тонкому биологически активному поверхностному пористому слою.

Однако при плазменном напылении биоактивного порошка теряются многие исходные химические свойства, что приводит к недостаточной биоактивности покрытия. Кроме того, покрытие является хрупким, что не позволяет использовать его при изготовлении высоконагруженных имплантатов.

Задача изобретения заключается в повышении биоактивности и механической прочности имплантата.

Техническим результатом является образование в поверхностном слое системы покрытий имплантата большого количества упрочняющих фаз, препятствующих развитию усталостных трещин и выходу их на поверхность, а также образование на поверхности системы покрытий тонкой беспористой наноразмерной алмазоподобной пленки, способствующей быстрому росту костной ткани.

Поставленная задача решается тем, что в способе изготовления внутрикостного имплантата, включающем пескоструйную обработку поверхности имплантата частицами оксида алюминия, послойное напыление плазменным методом на основу имплантата системы биосовместимых покрытий из смеси порошков титана или гидрида титана и гидроксиапатита кальция, при этом первым слоем напыляют титан или гидрид титана дисперсностью 3-5 мкм с дистанцией напыления 70-80 мм и толщиной 5-10 мкм, вторым слоем - титан или гидрид титана дисперсностью 50-100 мкм с дистанцией напыления 100 мм, толщиной 15-20 мкм, третьим слоем напыляют смесью титана или гидрида титана дисперсностью 50-100 мкм и гидроксиапатита кальция дисперсностью 5-10 мкм, с соотношением 70-80 и 30-20 мас.% соответственно, с дистанцией напыления 90-100 мм и толщиной слоя 30-50 мкм, четвертым слоем - смесь титана или гидрида титана дисперсностью 50-100 мкм и гидроксиапатита кальция дисперсностью 20-40 мкм, с соотношением 50-60 и 50-40 мас.% соответственно, с дистанцией напыления 80-85 мм и толщиной 30-50 мкм, пятым слоем напыляют гидроксиапатит кальция дисперсностью 40-70 мкм с дистанцией напыления 70 мм и толщиной слоя 20-30 мкм, согласно предлагаемому техническому решению, многослойную систему биосовместимых покрытий облучают в вакуумной среде углеводородного газа высокоэнергетическими ионами инертного газа с энергией 40-130 кэВ и дозой облучения 2000-5000 мкКл/см2.

Изобретение поясняется чертежами, где на фиг.1 представлена схема послойного формирования покрытий, на фиг.2 - схема ионно-лучевой обработки системы покрытий.

Предлагаемый способ изготовления стоматологического имплантата осуществляют следующим образом (см. фиг.1). Перед напылением поверхность основы металлического имплантата 1 подвергают пескоструйной обработке частицами оксида алюминия, затем наносят первый слой 2 толщиной 5-10 мкм из порошка титана или гидрида титана дисперсностью 3-5 мкм с расстояния 70-80 мкм; второй слой 3 толщиной 15-20 мкм напыляют титаном или гидридом титана дисперсностью 50-100 мкм с дистанцией напыления 100 мм; третий слой 4 толщиной 30-50 мкм - смесью титана или гидрида титана (70-80 мас.%) и гидроксиапатита кальция (30-20 мас.%) дисперсностью 50-100 мкм и 5-10 мкм соответственно, с расстояния 90-100 мм; четвертый слой 5 толщиной 30-50 мкм - смесью титана или гидрида титана (50-60 мас.%) с гидроксиапатитом кальция (50-40 мас.%) дисперсностью 50-100 мкм и 20-40 мкм, с дистанцией напыления 80-85 мм и пятый слой 6 толщиной 20-30 мкм напыляют гидроксиапатитом кальция дисперсностью 40-70 мкм с расстояния 70 мм, соответственно. Напыление осуществляют плазменным методом в атмосфере в струе защитного газа, например аргона, при этом расход плазмообразующего газа составляет 20-40 л/мин. Скорость перемещения плазмотрона при напылении 80-700 мм/мин, ток плазменной дуги составляет 450-540 А, напряжение дуги 30 В, скорость вращения детали 110-160 об/мин.

Затем изделие с многослойной системой покрытий закрепляют на барабане 7 (см. фиг.2) в установке ионно-лучевого легирования, например «Везувий-5» (Мейер Дж. Эриксон Л. «Ионное легирование полупроводников» 1970 г. М.: Мир). В объеме приемной камеры 8 установки откачивают давление до 10-6 мм рт.ст. с помощью высоковакуумных насосов 9, которое фиксируют ионизационным датчиком высокого вакуума 10 и вакуумметром 11. Далее, по команде оператора, в камеру 8 через игольчатый клапан 12 из баллона 13 по герметичному трубопроводу 14 в объем приемной камеры 8 подают реакционный углеводородный газ, например оксид углерода (СО) или углеводорода (СН), при этом давление в камере по средствам ЭВМ 15 (автоматически) изменяют в сторону повышения, но не более 10-4 мм рт.ст., что фиксируется ионизационным датчиком высокого вакуума 10 и вакуумметром 11. Сигнал с датчика высокого вакуума 10 поступает на электронный блок 16, где происходит сравнение полученных значений вакуума с заданной величиной. Далее сигнал через устройство сопряжения с объектом 17 (УСО) передается на ЭВМ и уже затем на источник питания привода 18 игольчатого клапана 12. Данный процесс повторяется постоянно с целью поддержания заданной величины давления в объеме приемной камеры 8 установки. Далее изделие с многослойной системой покрытий, находящееся на барабане 7 в приемной камере 8, облучают ионами инертного газа с энергией 40-130 кэВ и интегральной дозой 2000-5000 мкКл/см 2, например ионами аргона (Ar) или неона (Ne) (см. табл.1, 2), которые образуются в разрядной камере ионного источника 19 за счет ионизации паров рабочего вещества в дуговом разряде и вытягиваются из него при помощи электрода.

Облучение изделий осуществляют в среде газа, например CO, CH, являющегося источником углерода, необходимого для синтеза на поверхности изделий углеродсодержащей наноразмерной алмазоподобной полимерной пленки. При ионно-лучевой обработке в поверхностном слое адсорбированных углеродсодержащих фрагментов происходят процессы ионизации и диссоциации молекул, приводящие к возникновению заряженных радикалов, процесс сшивания которых стимулируется энергетическим воздействием ионно-лучевой обработки и контролируется поступлением электронов из нижележащего металла. По мере увеличения толщины заполимеризовавшегося слоя поступление электронов к поверхности реакции затрудняется и при достижении толщины порядка длины туннелирования электронов рост алмазоподобной полимерной пленки прекращается. Наиболее интенсивно процесс роста протекает на участках заполимеризовавшегося слоя с меньшей толщиной и порами, что обеспечивает высокую равномерность и беспористость пленки.

Облучение многослойных биосовместимых покрытий высокоэнергетическими ионами инертного газа, например Ar, He, Xe, Rn, Kr, Ne, являющимися химически не активными с металлом, обеспечивает максимальную прочность сцепления покрытия с соседними слоями и с подложкой, за счет ионного перемешивания фрагментов адсорбированной на поверхности покрытий полимерной пленкой с приповерхностным слоем металла. Облучение высокоэнергетическими ионами инертного газа способствует появлению на многослойном покрытии равномерной алмазоподобной беспористой полимерной пленки, обладающей высокой химической инертностью и механической прочностью, способствующей быстрому росту костной ткани. После облучения системы покрытий в структуре образуется большое количество упрочняющих фаз, препятствующих развитию усталостных трещин. При введении в костную ткань такого имплантата с алмазоподобным покрытием наблюдается эффективное прорастание кости в поры покрытия, что обеспечивает прочное закрепление имплантата и длительное его функционирование в организме.

В таблицах 1, 2 представлены характеристики получаемого покрытия в зависимости от дозы и энергии облучения, соответственно.

Таблица 1
Энергия, Е, кВДоза, Ф,

мкКл/см2
ИоныМикротвердость, Q, кгс/мм2 ИоныМикротвердость, Q, кгс/мм2
-- -70 -70
способ изготовления внутрикостного стоматологического имплантата   с ионно-лучевой модификацией плазмонапыленного многослойного   биоактивного покрытия, патент № 2458707 500 способ изготовления внутрикостного стоматологического имплантата   с ионно-лучевой модификацией плазмонапыленного многослойного   биоактивного покрытия, патент № 2458707 250 способ изготовления внутрикостного стоматологического имплантата   с ионно-лучевой модификацией плазмонапыленного многослойного   биоактивного покрытия, патент № 2458707 200
1000 290232
2000 330264
75 3000Ar 350Ne 297
способ изготовления внутрикостного стоматологического имплантата   с ионно-лучевой модификацией плазмонапыленного многослойного   биоактивного покрытия, патент № 2458707 4000 способ изготовления внутрикостного стоматологического имплантата   с ионно-лучевой модификацией плазмонапыленного многослойного   биоактивного покрытия, патент № 2458707 335 способ изготовления внутрикостного стоматологического имплантата   с ионно-лучевой модификацией плазмонапыленного многослойного   биоактивного покрытия, патент № 2458707 285
5000 320272
6000 300240
7000 250200

Таблица 2
Доза, Ф, мк Кл/см2 Энергия, Е, кВИоны Микротвердость, Q, кгс/мм 2Ионы Микротвердость,

Q, кгс/мм2
-- -70 -70
способ изготовления внутрикостного стоматологического имплантата   с ионно-лучевой модификацией плазмонапыленного многослойного   биоактивного покрытия, патент № 2458707 30 способ изготовления внутрикостного стоматологического имплантата   с ионно-лучевой модификацией плазмонапыленного многослойного   биоактивного покрытия, патент № 2458707 317 способ изготовления внутрикостного стоматологического имплантата   с ионно-лучевой модификацией плазмонапыленного многослойного   биоактивного покрытия, патент № 2458707 248
40 350290
60 352290
3000 80Ar 350Ne 297
способ изготовления внутрикостного стоматологического имплантата   с ионно-лучевой модификацией плазмонапыленного многослойного   биоактивного покрытия, патент № 2458707 100 способ изготовления внутрикостного стоматологического имплантата   с ионно-лучевой модификацией плазмонапыленного многослойного   биоактивного покрытия, патент № 2458707 350 способ изготовления внутрикостного стоматологического имплантата   с ионно-лучевой модификацией плазмонапыленного многослойного   биоактивного покрытия, патент № 2458707 295
120 352290
130 350290
150 337267

Из таблиц 1, 2 видно, что наиболее оптимальными диапазонами энергии и дозы облучения, при котором покрытия обладают высокой механической прочностью, являются значения 40-130 кэВ, 2000-5000 мкКл/см2, соответственно.

При ионно-лучевом облучении покрытий с энергетическим воздействием менее 40 кэВ процесс сшивки полимерной углеродсодержащей пленки происходит менее эффективно, т.к. ионам недостаточно энергетического воздействия, необходимого для разрыва химических связей атомов кристаллической решетки нижележащего металла, а при облучении с энергетическим воздействием более 130 кэВ внедряемые ионы из-за большой глубины проникновения затрудняют выход электронов на поверхность покрытий к месту синтеза углеродсодержащей полимерной пленки, что приводит к уменьшению механической прочности покрытий.

Таким образом, предлагаемое техническое решение позволяет повысить механическую прочность и биоактивность покрытия за счет образования на нем алмазоподобной беспористой наноразмерной химически инертной пленки, активно стимулирующей рост костной ткани и обладающей высокой твердостью.

Класс A61L27/02 неорганические материалы

многокомпонентное биоактивное нанокомпозиционное покрытие с антибактериальным эффектом -  патент 2524654 (27.07.2014)
способ получения шихты для композиционного материала на основе карбоната кальция и гидроксиапатита и/или карбонатгидроксиапатита для восстановления костной ткани при реконструктивно-пластических операциях -  патент 2523453 (20.07.2014)
способ изготовления внутрикостных имплантатов с антимикробным эффектом -  патент 2512714 (10.04.2014)
покрытие на имплант из титана и его сплавов и способ его приготовления -  патент 2502526 (27.12.2013)
способ модифицирования титановой поверхности -  патент 2495678 (20.10.2013)
композиционный материал на основе кальцийфосфатного цемента для заполнения костных дефектов -  патент 2484850 (20.06.2013)
способ получения нетоксичного пористого имплантата из полимолочной кислоты для замещения костных дефектов длинных трубчатых костей -  патент 2465017 (27.10.2012)
костно-протезный материал и способ его изготовления -  патент 2457000 (27.07.2012)
способ изготовления внутрикостных имплантатов -  патент 2443434 (27.02.2012)
способ получения наноразмерного порошка для биоматериалов -  патент 2440149 (20.01.2012)

Класс A61C8/00 Приспособления, прикрепляемые к челюсти, для укрепления естественных зубов или для крепления зубных протезов; зубные имплантаты; инструменты для имплантации

дентальный внутрикостно-поднадкостничный имплантат и способ его установки -  патент 2529472 (27.09.2014)
фрезерованный трансдентальный имплантат -  патент 2529392 (27.09.2014)
устройство зубного имплантата, содержащее магнитный временный винт -  патент 2529376 (27.09.2014)
способ внутрикостной дентальной имплантации с одновременным восстановлением утраченного объема кости -  патент 2528938 (20.09.2014)
способ и устройство для наложения лигатур при шинировании переломов челюстей -  патент 2526666 (27.08.2014)
способ изготовления внутрикостных имплантатов с многослойным покрытием -  патент 2526252 (20.08.2014)
способ изготовления внутрикостного стоматологического имплантата -  патент 2525737 (20.08.2014)
способ лечения деструктивных форм хронического генерализованного пародонтита с применением подслизистого долговременного шинирования -  патент 2524780 (10.08.2014)
способ получения дентального имплантата погружного типа из титана или титанового сплава и дентальный имплантат из титана или титанового сплава -  патент 2524764 (10.08.2014)
способ создания зуба -  патент 2523559 (20.07.2014)

Класс C23C14/00 Покрытие вакуумным испарением, распылением металлов или ионным внедрением материала, образующего покрытие

способ ионной имплантации поверхностей деталей из конструкционной стали -  патент 2529337 (27.09.2014)
покрывная система, деталь с покрытием и способ ее получения -  патент 2528930 (20.09.2014)
способ изготовления слоев оксида металла заранее заданной структуры посредством испарения электрической дугой -  патент 2528602 (20.09.2014)
магнитный блок распылительной системы -  патент 2528536 (20.09.2014)
износостойкое защитное покрытие и способ его получения -  патент 2528298 (10.09.2014)
режущая пластина -  патент 2528288 (10.09.2014)
двухслойное износостойкое покрытие режущего инструмента -  патент 2527829 (10.09.2014)
сплав на основе никеля для нанесения износо- и коррозионностойких покрытий микроплазменным или холодным сверхзвуковым напылением -  патент 2527543 (10.09.2014)
способ нанесения аморфного алмазоподобного покрытия на лезвия хирургических скальпелей -  патент 2527113 (27.08.2014)
способ импульсно-периодической ионной очистки поверхности изделий из диэлектрического материала или проводящего материала с диэлектрическими включениями -  патент 2526654 (27.08.2014)

Класс C23C14/58 последующая обработка

способ импульсно-периодической ионной очистки поверхности изделий из диэлектрического материала или проводящего материала с диэлектрическими включениями -  патент 2526654 (27.08.2014)
конвертер вакуумного ультрафиолетового излучения в излучение видимого диапазона в виде аморфной пленки оксида кремния siox на кремниевой подложке -  патент 2526344 (20.08.2014)
способ изготовления термического барьера, покрывающего металлическую подложку из жаропрочного сплава, и термомеханическая деталь, полученная этим способом изготовления -  патент 2526337 (20.08.2014)
способ получения люминофора в виде аморфной пленки диоксида кремния с ионами селена на кремниевой подложке -  патент 2504600 (20.01.2014)
способ изготовления сверхпроводниковых однофотонных детекторов -  патент 2476373 (27.02.2013)
способ вакуумного ионно-плазменного нанесения покрытий -  патент 2451770 (27.05.2012)
установка вакуумного осаждения намоточного типа -  патент 2449050 (27.04.2012)
способ получения нанокристаллических пленок рутила -  патент 2436727 (20.12.2011)
установка для комбинированной ионно-плазменной обработки -  патент 2425173 (27.07.2011)
способ допроявления фоторезиста на пьезоэлектрических подложках -  патент 2416676 (20.04.2011)
Наверх