способ получения катализатора окисления метанола до формальдегида
Классы МПК: | B01J23/881 и железом B01J37/00 Способы получения катализаторов вообще; способы активирования катализаторов вообще B01J37/04 смешивание B01J37/34 облучение или применение электрической, магнитной или волновой энергии или применение этих видов энергии, например ультразвуковых колебаний C07C47/04 формальдегид C07C47/052 получение окислением метанола |
Автор(ы): | Ильин Александр Павлович (RU), Ильин Александр Александрович (RU), Жуков Анатолий Борисович (RU), Румянцев Руслан Николаевич (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановский государственный химико-технологический университет" (RU) |
Приоритеты: |
подача заявки:
2011-07-01 публикация патента:
20.08.2012 |
Изобретение относится к способу получения катализатора окисления метанола до формальдегида и может быть использовано в производстве формальдегида и карбамидо-формальдегидных смол. Способ получения катализатора окисления метанола до формальдегида включает взаимодействие железосодержащего компонента с триоксидом молибдена с последующим формованием гранул, сушкой и прокаливанием, при этом в качестве железосодержащего компонента используют оксид железа, а взаимодействие осуществляют в мельнице с ударно-сдвиговым характером нагружения при энергонапряженности 10-200 Вт/г и массовом соотношении MoO3:Fe2O3=(80÷40):(20÷60). Технический результат - использование изобретения позволит увеличить величину удельной поверхности на 51-84%, механическую прочность на 60-68%, а также вдвое сократить количество технологических операций. 1 табл., 3 пр.
Формула изобретения
Способ получения катализатора окисления метанола до формальдегида, включающий взаимодействие железосодержащего компонента с триоксидом молибдена с последующим формованием гранул, сушкой и прокаливанием, отличающийся тем, что в качестве железосодержащего компонента используют оксид железа, а взаимодействие осуществляют в мельнице с ударно-сдвиговым характером нагружения при энергонапряженности 10-200 Вт/г и массовом соотношении MoO3:Fe2 O3=(80÷40):(20÷60).
Описание изобретения к патенту
ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к способу получения катализатора окисления метанола до формальдегида и может быть использовано в производстве формальдегида и карбамидо-формальдегидных смол.
УРОВЕНЬ ТЕХНИКИ
Известен способ получения катализатора окисления метанола в формальдегид, включающий взаимодействие солей Fе(NO3)3 и (NH 4)2MoO3 с образованием гидрогеля молибдата железа Fе2(МоO4)3·xH 2O с последующей промывкой умягченной водой, фильтрацией, сушкой, измельчением, прессованием в таблетки с добавлением угля и дальнейшей термообработкой при температуре 670 K. [Колесников И.М. Катализ и производство катализаторов. - М.: «Техника», 2004, с.327.]
Недостатком данного способа является низкая технологичность процесса обусловленная большим количеством технологических операций и наличием требующих очистки сточных вод.
Известен способ получения катализатора окисления метанола в формальдегид на основе оксидов железа, молибдена и хрома, включающий смешение металлического железа, молибдата аммония и оксида хрома в уксусной кислоте в количествах, обеспечивающих атомарное отношение Fe:Cr+Fe=0.5÷0.95 и Mo:Fe+Cr=2,5÷3 при прогревании до 60÷90°C и перемешивании до образования пасты с последующей термической обработкой при 500÷550°C с получением катализатора состава Fex-1Crx Mo1÷2,5÷3, где x=0,05÷0,5. [Патент RU 2047356, B01J 37/04, B01J 23/881, B01J 23/881, B01J 103:48, опубл. 10.11.1995.]
Недостатком данного способа является недостаточно высокая активность катализатора, а также использование в качестве сырья соединений хрома, что ухудшает экологические условия производства.
Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату, то есть прототипом, является способ получения катализатора окисления метанола до формальдегида, содержащего смеси Fе 2(МоO4)3/МоO3, в которых атомное соотношение Mo/Fe составляет от 1,5 до 5, включающий взаимодействие порошка железа и триоксида молибдена в соотношении Mo/Fe от 1,5 до 5 в водной суспензии при температуре от 20 до 100°C, и затем, необязательно одновременно, окисление смеси окислителем в количестве, равном или большем чем количество, требуемое для окисления иона двухвалентного железа до иона трехвалентного железа и окисления молибдена до валентного состояния 6, сушку, формование гранул, имеющих специфическую геометрическую форму и прокаливание при температуре от 450°C до 600°C. [Патент RU 2388536 (13) С2, опубл. 10.05.2010.]
К недостаткам прототипа следует отнести недостаточно высокую удельную поверхность и механическую прочность получаемого катализатора, а также большое количество технологических операций.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Задачей изобретения является получение катализатора с более высокой удельной поверхностью и механической прочностью, а также сокращение количества технологических операций.
Поставленная задача решена в предлагаемом способе получения катализатора окисления метанола до формальдегида, включающем взаимодействие железосодержащего компонента с триоксидом молибдена с последующим формованием гранул, сушкой и прокаливанием, при этом в качестве железосодержащего компонента используют оксид железа, а взаимодействие осуществляют в мельнице с ударно-сдвиговым характером нагружения при энергонапряженности 10-200 Вт/г и массовом соотношении МоО3:Fe2O3=(80÷40):(20÷60).
СВЕДЕНИЯ, ПОДТВЕРЖДАЮЩИЕ ВОЗМОЖНОСТЬ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Пример 1
В барабан вибрационной мельницы VM-4 загружают 80 г порошка оксида молибдена MoO3 и 20 г порошка оксида железа Fе2O 3 и активируют в течение 60 минут при энергонапряженности 40 Вт/г. Далее к полученному порошку добавляют 35 г воды, перемешивают до получения однородной пасты и формуют в гранулы, сушат 4 часа при температуре 120°C и прокаливают в течение 4 часов при температуре 400°C.
Пример 2
В планетарную мельницу АГО-2У загружают 65 г порошка оксида молибдена и 35 г оксида железа и активируют в течение 2 минут при энергонапряженности 200 Вт/г. К полученному порошку добавляют 35 г воды, перемешивают до получения однородной пасты и формуют в гранулы. Гранулы сушат 4 часа при температуре 120°C и прокаливают в течение 4 часов при температуре 400°C.
Пример 3
В шаровую мельницу загружают 40 г порошка оксида молибдена и 60 г порошка оксида железа и активируют в течение 24 часов при энергонапряженности 10 Вт/г. К полученному порошку добавляют 35 г воды, перемешивают до получения однородной пасты и формуют в гранулы. Гранулы сушат 4 часа при температуре 120°C и прокаливают в течение 4 часов при температуре 400°C.
Механическую прочность гранул на раздавливание по торцу определяли по известной методике. [Щукин Е.Д., Бессонов А.И., Паранский С.А. Механические испытания катализаторов и сорбентов. М.: Наука, 1971. - 56 с.]
Удельную поверхность образцов определяли методом БЭТ по низкотемпературной адсорбции аргона. [Физико-химическое применение газовой хроматографии. / А.В.Киселев, А.В.Иогансен, К.И.Сакодынский и др. - М.: Химия, 1973. - 256 с.]
Полученные данные представлены в таблице.
Сравнительные характеристики технических решений
Пример № | Удельная поверхность, м2/г | Механическая прочность, МПа | Количество технологических операций |
Пример 1 | 25,8 | 10,1 | 4 |
Пример 2 | 24,7 | 11,0 | 4 |
Пример 3 | 21,2 | 9,6 | 4 |
Прототип | 14,0 | 6,0 | 8 |
Из таблицы видно, что использование заявленного изобретения позолит увеличить величину удельной поверхности на 51-84%, механическую прочность на 60-68%, а также вдвое сократить количество технологических операций.
Класс B01J37/00 Способы получения катализаторов вообще; способы активирования катализаторов вообще
Класс B01J37/34 облучение или применение электрической, магнитной или волновой энергии или применение этих видов энергии, например ультразвуковых колебаний
Класс C07C47/052 получение окислением метанола