способ увеличения выхода биогаза в процессе сбраживания органосодержащих отходов
Классы МПК: | C02F11/04 анаэробная обработка; производство метана этим способом |
Автор(ы): | Ягафарова Гузель Габдулловна (RU), Егорова Юлия Павловна (RU), Акчурина Лилия Рамилевна (RU), Федорова Юлия Альбертовна (RU), Шаимова Алсу Маратовна (RU), Ягафаров Ильгизар Римович (RU) |
Патентообладатель(и): | Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" (RU) |
Приоритеты: |
подача заявки:
2010-12-13 публикация патента:
20.08.2012 |
Изобретение относится к методам переработки отходов, в частности к методам получения биогаза из органосодержащих отходов. Способ включает внесение в сбраживаемые органосодержащие отходы комплексной стимулирующей добавки, содержащей измельченную фитомассу амаранта багряного и аэробно стабилизированный активный ил в соотношении 1:1, из расчета 2-3% мас., с последующей обработкой полученной смеси ультразвуком с частотой 22 кГц и интенсивностью 6-8 Вт/см, при длительности обработки 4-8 мин. Способ позволяет значительно ускорить процессы метаногенного брожения, снизить температуру начала прохождения химических реакций, а также значительно повысить выход биогаза. 2 табл., 2 пр.
Формула изобретения
Способ увеличения выхода биогаза в процессе сбраживания органосодержащих отходов путем физического воздействия на водный органосодержащий субстрат, отличающийся тем, что в качестве физического воздействия используют ультразвук с частотой 22 кГц, интенсивностью 6-8 Вт/см 2, время обработки составляет 4-8 мин; при этом предварительно перед обработкой ультразвуком в водный органосодержащий субстрат вводят комплексную стимулирующую добавку, включающую измельченную фитомассу амаранта багряного и аэробно стабилизированный активный ил в соотношении 1:1, из расчета 2-3 мас.%.
Описание изобретения к патенту
Изобретение относится к методам переработки отходов, в частности к методам получения биогаза из органосодержащих отходов.
Известны способы увеличения выхода биогаза, предусматривающие повышение активности метанового сбраживания органического субстрата, за счет внесения стимуляторов, в качестве которых используют комплексные соединения ацетата никеля с этилендиамином или никеля с глицином (см, например, патент РФ № 1838415, С12Р 5/02, C02F 11/04, опубл. в 1993 г.), а также стимуляторов растительного происхождения, в частности измельченной фитомассы амаранта багряного (см., например, патент РФ № 2351552, C02F 11/04, опубл. 10.04.2009, бюл. № 10).
Общим недостатком известных способов является малый выход целевых продуктов за счет низкой эффективности технологического процесса. Использование в качестве добавки соединений ацетата никеля с этилендиамином или никеля с глицином может оказать влияние на чистоту выхода биогаза.
Наиболее близким по технической сущности является способ увеличения выхода биогаза в процессе сбраживания органосодержащих отходов путем физического воздействия (высоковольтный электрический разряд) на водный органосодержащий субстрат (см., например, патент РФ № 2302378, C02F 11/04, C02F 3/30, опубл. 10.07.2007, бюл. № 19). Способ позволяет значительно ускорить процесс анаэробного сбраживания и повысить выход биогаза.
Недостатками прототипа являются многостадийность, сложность и дороговизна аппаратурного оформления, высокая энергоемкость процесса, обусловленная повышенными затратами электроэнергии на осуществление процесса активации метаногенного брожения. Кроме того, неизбежная ограниченность числа электродов приводит к тому, что обработке подвергается не весь водный субстрат, а только часть, прилегающая к каналу прохождения разряда, что снижает эффект обработки.
Задача изобретения состоит в разработке более эффективного, простого и менее затратного способа, позволяющего производить процесс активации метаногенного брожения во всем объеме загружаемого субстрата.
Поставленная задача решается тем, что в способе увеличения выхода биогаза в процессе сбраживания органосодержащих отходов путем физического воздействия на водный органосодержащий субстрат, согласно изобретению в качестве физического воздействия используют ультразвук с частотой 22 кГц, интенсивностью 6-8 Вт/см 2, время обработки составляет 4-8 мин. Дополнительно в водный органосодержащий субстрат вводят комплексную стимулирующую добавку, включающую измельченную фитомассу амаранта багряного и аэробно стабилизированный активный ил в соотношении 1:1, из расчета 2-3% мас.
Ультразвук оказывает на биологические системы механическое, физическое и химическое воздействие [Хмелев В.Н., Сливин А.Н. и др. Применение ультразвука в промышленности. - Бийск: Изд-во Алт. гос. техн. ун-та, 2010. - 203 с.]. Механическое действие ультразвука приводит к размельчению и диспергированию частиц, а также усилению диффузии растворителей в биологических тканях.
Физико-химическое воздействие ультразвука проявляется в усилении проницаемости клеточных мембран, изменении концентрации водородных ионов в тканях, расщеплении высокомолекулярных соединений, ионизации молекул воды, приводящей к высвобождению высокоактивных радикалов, а также активизации обменных процессов внутри клеток.
Амарант багряный - широко распространенная, однолетняя культура из семейства амарантовых. Фитомасса амаранта является источником биологически активных веществ и природных соединений [В.И.Карбанович, Е.А.Цед. Исследования возможности использования водной вытяжки амаранта для интенсификации биохимических процессов // Пищевая промышленность: наука и технологии. - 2010. - № 1, с.51-54]: витаминов группы Е, Р, В, природных стиролов, сквалена, рутина, кверцетина, тиамина, рибофлавина, ниацина, хлорофилла, а также минеральных составляющих: кальция, железа, фосфора, магния, цинка, меди, натрия, калия, незаменимых жирных кислот, алкалоидов, пектинов, флавоноидов, пигментов и диуретических активных структур.
Аэробно стабилизированный активный ил представляет собой микробную суспензию, обладающую высокой деструктивной активностью в отношении многих сложных (включая трудно окисляемые) органических соединений, за счет наличия в иле широкого спектра ферментных систем, в том числе из групп оксиредуктаз: каталаз, дегидрогеназ, цитохромов и др. [Инженерное оборудование зданий и сооружений. Энциклопедия. Под ред. С.В.Яковлев, Богословский В.Н., Гладков В.А. и др. - Изд-во: Стройиздат, 1994. - 512 с.].
Установлено, что внесение в водный органосодержащий субстрат комплексной добавки, включающей аэробно стабилизированный активный ил и амарант, с последующей обработкой полученной смеси ультразвуком позволяет значительно ускорить процессы метаногенного брожения, снизить температуру начала прохождения химических реакций, а также значительно повысить выход биогаза.
Пример 1. Для проведения опыта готовились модельные образцы водных органосодержащих субстратов, с различным исходным содержанием биоразлагаемой органической части, % мас. по абсолютно сухому веществу: 25, 50, 75 и 100. Полученные образцы обрабатывали в соответствии с рекомендациями, описанными в заявляемом способе (частота 22 кГц, интенсивность 7 Вт/см2, время обработки 6 мин), прототипе и аналогах. Культивирование образцов проводили в анаэробных условиях, в термостате при 40°С, в течение 20 суток. Эффективность процесса метаногенного брожения оценивали по увеличению выхода биогаза в сравнении с контролем. В качестве контроля использовали водный органосодержащий субстрат без предварительной обработки. Результаты обобщены в табл.1
Как видно из табл.1, обработка ультразвуком с предварительным внесением добавки, включающей амарант багряный и аэробно стабилизированный активный ил, позволяет увеличить выход биогаза в сравнении с контролем и другими видами обработок. При этом увеличение выхода биогаза для субстратов, предварительно обработанных в соответствии с заявляемым способом и содержащих 25, 50, 75 и 100% мас. биоразлагаемой органики, составило - 8,3; 17,2; 22,4 и 30,2% соответственно.
Пример 2. Опыт ставился по схеме примера 1. Предварительно в модельные образцы вносили комплексную стимулирующую добавку, включающую измельченную фитомассу амаранта багряного и стабилизированный активный ил. Полученные смеси обрабатывали ультразвуком с частотой 22 кГц и интенсивностью 5-9 Вт/см2. Время обработки составляло 3-9 мин. Эффективность процесса метаногенного брожения оценивали по увеличению выхода биогаза в сравнении с контролем.
Результаты представлены в табл.2.
Табл.2 | |||||
Влияние условий ультразвуковой обработки модельных образцов на выход биогаза | |||||
Условия обработки | Увеличение выхода биогаза, % | ||||
Содержание органической части, % мас. | |||||
Интенсивность, Вт/см2 | Время обработки, мин | 25 | 50 | 75 | 100 |
5 | 3 | 7,97 | 13,76 | 17,93 | 24,16 |
4 | 8,01 | 14,94 | 19,47 | 26,22 | |
6 | 8,07 | 16,72 | 21,79 | 29,36 | |
8 | 8,03 | 14,98 | 19,52 | 26,29 | |
9 | 7,98 | 13,78 | 17,96 | 24,19 | |
6 | 3 | 8,09 | 13,97 | 18,20 | 24,52 |
4 | 8,13 | 15,16 | 19,76 | 26,62 | |
6 | 8,19 | 16,97 | 22,12 | 29,79 | |
8 | 8,15 | 15,20 | 19,81 | 26,68 | |
9 | 8,10 | 13,99 | 18,23 | 24,56 | |
7 | 3 | 8,21 | 14,18 | 18,47 | 24,89 |
4 | 8,25 | 15,39 | 20,05 | 27,01 | |
6 | 8,31 | 17,22 | 22,44 | 30,20 | |
8 | 8,27 | 15,42 | 20,10 | 27,08 | |
9 | 8,22 | 14,19 | 18,50 | 24,92 | |
8 | 3 | 8,14 | 14,06 | 18,31 | 24,68 |
4 | 8,18 | 15,26 | 19,88 | 26,78 | |
6 | 8,24 | 17,07 | 22,25 | 29,95 | |
8 | 8,20 | 15,29 | 19,93 | 26,85 | |
9 | 8,15 | 14,07 | 18,34 | 24,71 | |
9 | 3 | 7,98 | 13,78 | 17,95 | 24,19 |
4 | 8,02 | 14,96 | 19,49 | 26,26 | |
6 | 8,08 | 16,74 | 21,82 | 29,36 | |
8 | 8,04 | 14,99 | 19,54 | 26,33 | |
9 | 7,99 | 13,79 | 17,98 | 24,22 |
Как видно из табл.2, наибольшее увеличение выхода биогаза наблюдается при интенсивности ультразвукового воздействия 6-8 Вт/см2, оптимальное время обработки 4-8 мин.
Таким образом, внесение комплексной стимулирующей добавки, включающей измельченную фитомассу амаранта багряного и стабилизированный активный ил в соотношении 1:1, из расчета 2-3% мас., с последующей обработкой полученной смеси ультразвуком с частотой 22 кГц и интенсивностью 6-8 Вт/см 2, при длительности обработки 4-8 мин позволяет значительно повысить выход биогаза при сбраживапии органосодержащих отходов.
Класс C02F11/04 анаэробная обработка; производство метана этим способом