способ компоновки аппаратно-программных средств
Классы МПК: | G06F1/18 компоновка или распределение питания G06F13/00 Соединение запоминающих устройств, устройств ввода-вывода или устройств центрального процессора или передача информации или других сигналов между этими устройствами |
Автор(ы): | Бондаренко Виталий Владимирович (RU), Медзигов Александр Владимирович (RU), Шаламов Георгий Николаевич (RU) |
Патентообладатель(и): | Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации (RU) |
Приоритеты: |
подача заявки:
2010-07-05 публикация патента:
27.08.2012 |
Изобретение относится к способу компоновки аппаратно-программных средств. Технический результат заключается в увеличении быстродействия технических средств. Коммуникатор Switch волоконно-оптического интерфейса и контроллер сопряжения и управления твердотельным накопителем SSD по сети Ethernet формируют в составе электронного модуля, который совместно с компьютером-на-модуле и накопителем SSD устанавливают на радиаторе малогабаритного корпуса. Обеспечивают соединение компьютера-на-модуле по шине PCI Express с электронным модулем, по шине Gigabit Ethernet с коммутатором Switch электронного модуля, а по шине Serial ATA - с твердотельным накопителем SSD, второй вход которого соединяют с выходом электронного модуля по цепи управления Ethernet, в соответствии с чем управление работой комплекса аппаратуры, содержащего несколько корпусных модулей, осуществляют по сети Ethernet при последовательном соединении волоконно-оптических входов/выходов Ethernet корпусных модулей. 5 ил.
Формула изобретения
Способ компоновки аппаратно-программных средств по технологии, названной Ethernet-module, заключающийся в том, что компонуемые в составе одного малогабаритного корпуса элементы сопрягают с технологией высокоскоростной Ethernet волоконно-оптического интерфейса, отличающийся тем, что часть функционально завершенной аппаратуры, коммуникатор Switch волоконно-оптического интерфейса и контроллер сопряжения и управления твердотельным накопителем SSD по сети Ethernet формируют в составе электронного модуля, который совместно с компьютером-на-модуле и накопителем SSD устанавливают на радиаторе малогабаритного корпуса, при этом для создания функционально завершенного программно-управляемого корпусного модуля обеспечивают соединение компьютера-на-модуле по шине PCI Express с электронным модулем, по шине Gigabit Ethernet - с коммуникатором Switch электронного модуля, а по шине Serial АТА - с твердотельным накопителем SSD, второй вход которого соединяют с выходом электронного модуля по цепи управления Ethernet, в соответствии с чем управление работой комплекса аппаратуры, содержащего несколько корпусных модулей, осуществляют по сети Ethernet при последовательном соединении волоконно-оптических входов/выходов Ethernet корпусных модулей.
Описание изобретения к патенту
Изобретение относится к области радиотехники, электроники, вычислительной техники и другим областям радиоэлектроники.
Как известно, для формирования радиоаппаратуры различного назначения используется магистрально-модульный принцип построения ([1] - Шубарев В. и др. Магистрально-модульное построение РЭС - стратегическое направление радиоэлектронного приборостроения. Электроника. Наука. Технология. Бизнес. Спецвыпуск . 2008 г.), базирующийся на использовании базовых несущих конструкций (БНК). БНК предусматривают несколько уровней формирования аппаратуры: электронный модуль (плата) с функционально завершенным решением; крейт - для установки электронных модулей; стойку - для установки нескольких крейтов, обеспечивающую формирование комплекса аппаратуры определенного назначения.
Многие варианты решений крейтов содержат в своем составе источники питания, вентиляционные системы как с верхним, так и с нижним расположением по отношению каркаса для электронных модулей, что характеризует их как стоечное решение для отдельных видов аппаратуры.
Стойки, в которые устанавливаются крейты с аппаратурой, как правило, имеют источники питания и вентиляционные системы. Стойки обычно используются для компоновки комплекса аппаратуры определенного назначения. В зависимости от вариантов построения как крейтов, так и стоек, в них могуг использоваться отдельно поставляемые источники питания и вентиляционные системы.
В большинстве решений крейтов в качестве объединительной платы электронно-управляемых модулей используются шина PCI или VME. Так, конструктивы компании ELMA используют шину VME. Программное управление электронными модулями, которые объединены шиной VME и возможными внешними связями, осуществляется с помощью контроллера VME, соединенного с внешней персональной ЭВМ (ПЭВМ) ([2] - Шаламов Г.Н. и др. Способ автоматизированного мониторинга систем радиосвязи. Патент № 2263406 от 27.10.05. Россия). Крейты позволяют использовать и платные ЭВМ как дополнение для отдельных задач, так и для непосредственного использования взамен внешней ПЭВМ. Объединение нескольких компьютеров (нескольких крейтов с компьютерами в стоечном решении) осуществляется с помощью концентраторов (коммуникаторов Switch), позволяющих организовать локально-вычислительную сеть Ethernet.
Необходимо отметить, что в отдельных случаях с целью защиты высокочувствительной аппаратуры, а также возможного решения задачи по электромагнитной совместимости, отдельные части аппаратуры и даже целые крейты помещают в экранирующие кожухи, способствующие значительному снижению уровня непреднамеренных электромагнитных излучений, но и увеличивающие массогабаритные характеристики компонуемой аппаратуры.
Исходя из изложенного, способ компоновки аппаратуры, построенной по магистрально-модульному принципу [1], принятый за прототип, осуществляется в соответствии со следующей процедурой:
- часть функционально завершенной аппаратуры компонуют в составе электронного модуля;
- электронные модули устанавливают в крейт по соответствующим направляющим;
- для создания функционально завершенной программно-управляемой аппаратуры электронные модули в составе крейта объединяют с помощью шины VME и других внешних соединений;
- управление работой аппаратуры крейта осуществляют с помощью контроллера шины VME, сопряженного с ПЭВМ (или платной ЭВМ);
- управление работой комплекса аппаратуры, содержащего несколько крейтов и несколько ЭВМ (стоечное исполнение), осуществляют по сети Ethernet, объединяющей несколько ЭВМ (ПЭВМ) с помощью концентратора ([3] - Стефан Рупп и др. Модульные концентраторы для наращивания пропускной способности связных структур в решениях стандарта Advanced ТСА. Мир компьютерной автоматизации . 2008 г., № 8.) (коммутатора Switch) локальной вычислительной сети (ЛВС).
Бурное развитие современных телекоммуникаций, направленное на значительное увеличение пропускной способности, скоростей передачи информации, требующих использования широких и сверхшироких полос частотного диапазона, все более увеличивающаяся интеграция сетей Internet и Ethernet, магистральных волоконно-оптических линий связи (ВОЛС) и спутниковых систем на базе технологии IP (Интернет-протокол), требуют иного подхода по формированию и построению аппаратуры связных систем. В этой связи, благодаря усилиям ассоциации VITA (VME bus International Trade Association) на сегодня разработаны новые стандарты VITA 41 (VXS), VITA 46 (VPX) и VITA 48 (VPX REDI), базирующиеся на идее использования во встроенных системах последовательных интерфейсов с коммутацией пакетов (Switched fabrics), что обеспечило возможность приближения технологиям VME к технологии передачи данных в оптической 10 Gigabit Ethernet ([4] - Дэвид Компстон. Появление стандартов VPX и VPX REDI продлевает триумфальное шествие VME bus. Мир компьютерной автоматизации . 2006 г., № 1).
Новые технологии VITA значительно улучшили возможности магистрально-модульного принципа построения аппаратуры на шине VME, но применительно к новым задачам не устранили существующие проблемы, связанные с
- трудностями по обеспечению электромагнитной совместимости и снижения уровня непреднамеренных электромагнитных излучений из-за открытого шинного интерфейса;
- большими массогабаритными характеристики;
- длительным циклом технологического процесса производства.
Целью изобретения является создание нового способа компоновки аппаратно-программных средств, лишенного многих из перечисленных выше недостатков и обеспечивающего возможность работы с широкополосными и сверхширокополосными сигналами.
Для достижения поставленной цели предлагается способ компоновки аппаратно-программных средств по технологии, названной Ethernet-module, заключающийся в том, что компонуемые в составе одного малогабаритного корпуса элементы сопрягают с технологией высокоскоростной Ethernet волоконно-оптического интерфейса.
Согласно изобретению часть функционально завершенной аппаратуры, коммуникатор Switch волоконно-оптического интерфейса и контроллер сопряжения и управления твердотельным накопителем SSD по сети Ethernet формируют в составе электронного модуля, который совместно с компьютером-на-модуле и накопителем SSD устанавливают на радиаторе малогабаритного корпуса, при этом для создания функционально завершенного программно-управляемого корпусного модуля обеспечивают соединение компьютера-на-модуле по шине PCI Express с электронным модулем, по шине Gigabit Ethernet с коммуникатором Switch электронного модуля, а по шине Serial ATA (SATA) - с твердотельным накопителем SSD, второй вход которого соединяют с выходом электронного модуля по цепи управления Ethernet, в соответствии с чем управление работой комплекса аппаратуры, содержащего несколько корпусных модулей, осуществляют по сети Ethernet при последовательном соединении волоконно-оптических входов/выходов Ethernet корпусных модулей.
Сочетание отличительных признаков и свойства предлагаемого способа из литературы не известно и поэтому способ компоновки аппаратно-программных средств по технологии Ethernet-module соответствует критериям "новизна" и "изобретательский уровень".
На фиг.1 приведена структурная схема компоновки корпусного модуля по предлагаемому способу.
На фиг.2 показан вариант размещения на радиаторе корпусного модуля функциональных устройств.
На фиг.3, 4 и 5 соответственно показаны конструктивные решения различных стоек, крейта двухуровнего исполнения и электронного модуля, вставляемого в крейт по направляющим, по технологии магистрально-модульного построения аппаратуры [1].
В состав корпусного модуля (фиг.1) по предлагаемому способу (технология Ethernet-module) входят электронный модуль 1, накопитель SSD 2, компьютер-на-модуле nano ЕТХ express-SP 3 ([5] - Первый в мире компьютер-на-модуле nano ЕТХ Express-SP на базе Intel Atom. Мир компьютерной автоматизации . 2008 г., № 3). В состав электронного модуля 1 входят часть функционально завершенных программно-управляемых технических средств 4, связанных по шине PCI Express с компьютером nano ЕТХ Express-SP 3, коммуникатор Switch 5, связанный по шине Ethernet с контроллером сопряжения и управления твердотельным накопителем SSD по сети Ethernet 6.
В соответствии с предлагаемым способом компоновку аппаратно-программных средств по технологии Ethernet-module осуществляют в следующей последовательности:
- компонуемые в составе одного малогабаритного корпуса элементы сопрягают с технологией высокоскоростной Ethernet волоконно-оптического интерфейса;
- часть функционально завершенной аппаратуры, коммуникатор Switch волоконно-оптического интерфейса и контроллер сопряжения и управления твердотельным накопителем SSD по сети Ethernet формируют в составе электронного модуля;
- электронный модуль, компьютер-на-модуле и накопитель SSD устанавливают на радиаторе малогабаритного корпуса;
- для создания функционально завершенного программно-управляемого корпусного модуля обеспечивают соединение компьютера-на-модуле по шине PCI Express с электронным модулем, по шине Gigabit Ethernet - с коммуникатором Switch электронного модуля, а по шине Serial ATA (SATA) - с твердотельным накопителем SSD, второй вход которого соединяют с выходом электронного модуля по цепи управления Ethernet;
- управление работой комплекса аппаратуры, содержащего несколько корпусных модулей, осуществляют по сети Ethernet при последовательном соединении волоконно-оптических входов/выходов Ethernet корпусных модулей.
Необходимо отметить, что шина PCI Express нанокомпьютера не единственная, по которой возможны обработка и управление функциональной частью электронного модуля. Для этой цели могут быть использованы и шины USB 2.0.
Как показано на фиг.2, для обеспечения оптимального теплового режима нанокомпьютера 3 его процессор плотно соприкасается с радиатором 7 корпусного модуля. С учетом этих же целей накопитель SSD 2 располагается непосредственно на радиаторе 7 корпусного модуля. Процессорная часть электронного модуля 1 через тепловой буфер 8 плотно соприкасается с радиатором 7 корпусного модуля.
Корпусной модуль имеет крышку 9, которая в зависимости от требований по электромагнитной совместимости и допустимого уровня непреднамеренных электромагнитных излучений может быть выполнена в виде экранирующего элемента (электромагнитный экран), в виде сеточного исполнения или исполнения из пластмассы.
Питание корпусного модуля осуществляется по цепи постоянного тока через входной фильтр по питанию (не показан). После входного фильтра по питанию в корпусе могут быть расположены дополнительные цепи стабилизированных питаний (при необходимости) на различные напряжения.
Корпусной модуль может крепиться к стене, балке, кронштейну, устанавливаться на столе, на другой аппаратуре и т.д. и т.п.
Возможно решение комплекса аппаратуры в виде моноблока, формируемого с помощью стяжных болтов, соединяющих два, три или более корпусных модулей, при этом межмодульные соединения сети Ethernet и других возможных оптических соединений могут быть выполнены открытой оптикой.
Предварительные расчеты показали, что с учетом имеющихся данных по размерам входящих в состав корпусного модуля элементов, уровня интеграции современной элементной базы, развития систем оптики, волоконной оптики и нанотехнологий, корпусной модуль по технологии Ethernet-module может представлять собой устройство высотой 6U и шириной не более двух секций по технологии крейтов БНК.
Предложенное решение обладает следующим спектром достоинств:
- высокой эффективностью, т.к. представляет консолидированное решение для многих применений;
- минимально возможными (на сегодняшний день) массогабаритными характеристиками;
- высокой технологичностью;
- малой металлоемкостью;
- значительно низким циклом производственных процессов при изготовлении;
- весьма эффективным подходом для обеспечения электромагнитной совместимости и снижения уровня электромагнитных излучений;
- высоким быстродействием и высокой пропускной способностью;
- возможностью перераспределения вычислительных ресурсов комплекса;
- возможностью оптимального перераспределения ресурсов памяти;
- высокой гибкостью формирования различных технических средств;
- минимальными затратами при обслуживании;
- значительно низкой себестоимостью;
- высокой ремонтопригодностью.
Настоящее решение проходит апробацию в различных уровнях производства.
Класс G06F1/18 компоновка или распределение питания
Класс G06F13/00 Соединение запоминающих устройств, устройств ввода-вывода или устройств центрального процессора или передача информации или других сигналов между этими устройствами