способ получения высокопрочной проволоки из сплава на основе титана конструкционного назначения
Классы МПК: | C22F1/18 тугоплавких или жаростойких металлов или их сплавов B21B3/00 Прокатка специальных сплавов, поскольку состав сплава требует особых способов или технологии прокатки |
Автор(ы): | Снегирева Лариса Анатольевна (RU), Колодкин Николай Иванович (RU), Козлов Александр Николаевич (RU) |
Патентообладатель(и): | Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") (RU) |
Приоритеты: |
подача заявки:
2011-10-07 публикация патента:
10.09.2012 |
Изобретение относится к области металлургии, в частности к обработке металлов давлением, и может быть использовано для получения высокопрочной проволоки из ( + )-титановых сплавов, предназначенной для изготовления витых и плетеных конструкций. Предложен способ изготовления высокопрочной проволоки из ( + )-титанового сплава мартенситного класса. Способ включает получение слитка, его горячую деформацию с получением заготовки для волочения, волочение при комнатной температуре на конечный размер и окончательную термическую обработку. После горячей деформации полученные заготовки отжигают на воздухе и механически обрабатывают, волочение проводят многократно с промежуточными отжигами в атмосфере воздуха, при этом после первого хода волочения проводят механическую обработку, а окончательную термическую обработку ведут в атмосфере воздуха в течение 60-180 минут при температуре (0,5÷0,7)Тп.п.°С с дальнейшим охлаждением до комнатной температуры. Технический результат - повышение предела прочности на разрыв при сохранении высокого уровня относительного удлинения за счет равномерности структуры по длине и сечению проволоки. 1 табл., 2 пр.
Формула изобретения
Способ изготовления высокопрочной проволоки из ( + )-титанового сплава мартенситного класса, включающий получение слитка, его горячую деформацию с получением заготовки для волочения, волочение при комнатной температуре на конечный размер и окончательную термическую обработку, отличающийся тем, что после горячей деформации полученные заготовки отжигают на воздухе и механически обрабатывают, волочение проводят многократно с промежуточными отжигами в атмосфере воздуха, при этом после первого хода волочения проводят механическую обработку, а окончательную термическую обработку ведут в атмосфере воздуха в течение 60-180 мин при температуре (0,5÷0,7)Тпп°С с дальнейшим охлаждением до комнатной температуры.
Описание изобретения к патенту
Предлагаемое изобретение относится к области обработки металлов давлением и может быть использовано для получения высокопрочной проволоки из титановых сплавов мартенситного класса.
Известен способ получения проволоки из ( + )-титановых сплавов, включающий нагрев, деформацию и отжиг (Волочение легких сплавов. Ерманок М.З., Ватрушин Л.С. М.: ВИЛС, 1999, с.95-108).
Недостатком этого способа являются применение многопереходной операции деформации, осуществляемой с нагревом, и применение энергоемких операций травления и вакуумного отжига, следствием которого является низкий уровень значений характеристик предела прочности на разрыв.
Известен также способ изготовления высокопрочной проволоки из титана и титановых сплавов, включающий получение слитка, его горячую деформацию с получением заготовки для волочения, волочение при комнатной температуре на конечный размер и окончательную термическую обработку (US 6077369 A, C22F 1/18, 20.06.2000) (прототип). Недостатком этого способа является окисление и трещинообразование поверхности, формирование структурной неоднородности по длине проволоки и как следствие разброс и нестабильность механических свойств проволоки.
Предлагается способ изготовления высокопрочной проволоки из ( + )-титанового сплава мартенситного класса, включающий получение слитка, его горячую деформацию с получением заготовки для волочения, волочение при комнатной температуре на конечный размер и окончательную термическую обработку.
Предлагаемый способ получения проволоки из титановых сплавов отличается от прототипа тем, что после горячей деформации полученные заготовки отжигают на воздухе и механически обрабатывают.
Предлагаемый способ получения проволоки из титановых сплавов отличается также тем, что волочение проводят многократно с промежуточными отжигами в атмосфере воздуха, при этом после первого хода волочения проводят механическую обработку, а окончательную термическую обработку ведут в атмосфере воздуха в течение 60-180 минут при температуре (0,5÷0,7)Тп.п.°С с дальнейшим охлаждением до комнатной температуры.
Тп.п. - температура полиморфного превращения титанового сплава.
Техническим результатом является повышение качества заготовки, повышение равномерности структуры по длине и сечению проволоки, повышение значений предела прочности на разрыв при сохранении высокого уровня значений относительного удлинения, снижение потребления электроэнергии технологического процесса.
Предлагаемый способ позволяет повысить качество заготовки для волочения за счет удаления дефектов поверхности при обточке, получать проволочную заготовку и проволоку титановых сплавов ( + ) мартенситного класса малого диаметра от 0,6 до 2,0 мм, повысить уровень значений предела прочности за счет формирования ( + )-структуры, состоящей из -фазы и частиц -фазы размером 0,2-1,0 мкм, имеющей низкую плотность дислокации, что достигается за счет фазовых превращений при проведении окончательной термической обработки проволоки.
Пример 1: методом вакуумного дугового переплава получали слиток из титанового сплава ВТ 16 диаметром 360 мм; нагревали до температуры 1180°С в газовой печи и ковали на диаметр 140 мм. Для удаления альфированного слоя полученную из слитка заготовку обтачивали, нагревали до температуры 950°С и проводили горячую прокатку на стане «250» в бухту на диаметр 8,0 мм. Далее проводили отжиг на воздухе при температуре 710°С, 1 час с охлаждением на воздухе и механическую обработку (калибровку) со съемом 0,3-0,5 мм на диаметр заготовки и многократное волочение заготовки после калибровки без нагрева из бухты в бухту до получения проволоки диаметром 0,6-2,0 мм с выполнением промежуточных отжигов на воздухе в течение 15 минут при температуре 630°С. Далее проводили термическую обработку по режиму: нагрев до температуры 450°С, выдержка в течение 90 минут, охлаждение на воздухе до комнатной температуры.
Механические свойства прутков, определенные по статическим испытаниям, представлены в таблице (эксперимент 1).
Пример 2: методом вакуумного дугового переплава получали слиток из титанового сплава ВТ16 диаметром 360 мм; нагревали до температуры 1180°С в газовой печи и ковали на диаметр 140 мм. Для удаления альфированного слоя полученную из слитка заготовку обтачивали, нагревали до температуры 950°С и проводили горячую прокатку на стане «250» в бухту на диаметр 8,0 мм. Далее проводили отжиг на воздухе при температуре 710°С, 1 час с охлаждением на воздухе и механическую обработку (калибровку) со съемом 0,3-0,5 мм на диаметр заготовки и многократное волочение заготовки после калибровки производили без нагрева из бухты в бухту до получения проволоки диаметром 0,6-2,0 мм с выполнением промежуточных отжигов на воздухе в течение 15 минут при температуре 630°С. Далее проводили термическую обработку проволоки по режиму: нагрев до температуры 350°С, выдержка в течение 120 минут, охлаждение на воздухе до комнатной температуры.
Механические свойства прутков, определенные по статическим испытаниям, представлены в таблице (эксперимент 2).
Получили проволоку диаметром от 0,6 до 2,0 мм (Пример 1, Пример 2), предназначенную для применения в авиационной и судостроительной областях промышленности, с регламентированным комплексом механических свойств.
Таким образом, предлагаемый способ получения проволоки из титановых сплавов позволяет произвести полуфабрикат (проволоку), обладающий стабильным высоким уровнем прочностных и пластических характеристик, что, в свою очередь, позволяет снизить весовые характеристики изделий, оказывает влияние на увеличение срока службы (долговечности) изделий, изготовленных с использованием проволоки.
Таблица | ||||
Механические свойства проволоки при температуре 20°С | ||||
№ эксперимента | Способ изготовления | В, МПа | 0,2, МПа | ,% |
Прототип | 840-950 | 880 | 14 | |
1. | Эксперимент 1 | 1200-1250 | 1100 | 5 |
2. | Эксперимент 2 | 1300-1550 | 1100-1250 | 3 |
Класс C22F1/18 тугоплавких или жаростойких металлов или их сплавов
Класс B21B3/00 Прокатка специальных сплавов, поскольку состав сплава требует особых способов или технологии прокатки