способ определения химического состава жидкостей методом спектрофотометрирования на проточных и проточно-дискретных автоанализаторах
Классы МПК: | G01N21/27 с помощью фотоэлектрических средств обнаружения |
Автор(ы): | Байбеков Роман Федорович (RU), Газов Владислав Арнольдович (RU), Ершов Вадим Владимирович (RU), Кузнецов Владимир Владимирович (RU), Логинов Юрий Михайлович (RU), Матвеев Геннадий Яковлевич (RU), Похлёбкина Людмила Петровна (RU), Стрельцов Александр Николаевич (RU), Фролов Юрий Васильевич (RU) |
Патентообладатель(и): | Государственное научное учреждение Всероссийский научно-исследовательский институт агрохимии им. Д.Н. Прянишникова (RU) |
Приоритеты: |
подача заявки:
2011-03-24 публикация патента:
27.09.2012 |
Изобретение относится к химическим методам анализа жидкостей с использованием автоанализаторов проточного или проточно-дискретного тип. Способ включает ввод анализируемых проб с помощью автомата подачи проб и перистальтического насоса в многоканальную гидравлическую систему, нагревание гидравлического потока в термостатирующем устройстве в колориметрическом канале и непрерывное измерение оптической плотности гидравлического потока или эмиссии пламени в горелке пламенного фотометра в определенной области спектра. При этом из гидравлической системы убирают каналы подачи воздуха и промывочной жидкости, а попадающие в гидравлическую систему пузырьки воздуха не удаляют перед поступлением гидравлического потока в кювету колориметра или в горелку пламенного фотометра, а пропускают через кювету колориметра или горелку пламенного фотометра и измерение оптической плотности или интенсивности излучения производят на отрезке гидравлического потока между пузырьками воздуха. Изобретение обеспечивает промывку кюветы самой анализируемой пробой и пузырьком воздуха, проходящим через кювету, в результате чего резко уменьшается влияние предыдущей пробы на последующую, что приводит к повышению точности измерений и скорости проведения работы. 3 ил.
Формула изобретения
Способ определения химического состава жидкостей методом спектрофотометрирования на проточных и проточно-дискретных автоанализаторах, включающий автоматический ввод анализируемых проб с помощью автомата подачи проб и перистальтического насоса в многоканальную гидравлическую систему, нагревание гидравлического потока в термостатирующем устройстве в колориметрическом канале и непрерывное измерение оптической плотности гидравлического потока, проходящего через проточную кювету спектрофотометра (колориметра) или непрерывное измерение эмиссии пламени в горелке пламенного фотометра в определенной области спектра и регистрации регистрограмм с помощью компьютерной системы и программных средств, отличающийся тем, что из гидравлической системы убирают каналы подачи воздуха и промывочной жидкости, а попадающие в гидравлическую систему пузырьки воздуха при манипуляции канюли автомата подачи проб не удаляют перед поступлением гидравлического потока в кювету колориметра или в горелку пламенного фотометра, а пропускают через кювету колориметра или горелку пламенного фотометра и измерение оптической плотности или интенсивности излучения производят на отрезке гидравлического потока между пузырьками воздуха.
Описание изобретения к патенту
Область применения изобретения относится к химическим методам анализа жидкостей с использованием автоанализаторов проточного или проточно-дискретного типа и измерением светопоглощения или светоизлучения в выбранных областях спектра анализируемых проб.
Изобретение может эффективно использоваться в аналитических лабораториях, проводящих массовые анализы химического состава почв, кормов и пищевого сырья и использующих автоанализаторы проточного или проточно-дискретного типов (лаборатории агрохимслужбы, санэпидемслужбы, службы экологии, лаборатории проектно-изыскательских служб, учебных и исследовательских учреждений и других ведомств).
Известны способы определения химического состава жидких сред на автоанализаторах проточного и проточно-дискретного типов, основанные на том, что в систему эластичных трубок с помощью перистальтического насоса по отдельным каналам непрерывно подаются, с выбранной для каждого канала производительностью, дистиллированная вода (основной носитель потока), реактивы, анализируемая проба и воздух (Методические указания по определению азота нитратов и нитритов в почвах, природных водах, кормах и растениях. Изд. ЦИНАО. Москва. - 1984; Методические указания по определению аммонизирующей способности почв. Изд. ЦИНАО. Москва. - 1990).
Для подготовки к измерениям химического состава отобранная проба анализируемой жидкости смешивается с реактивами в специальных смесителях гидравлической системы автоанализатора. Дистиллированная вода и пузырьки воздуха в гидравлической системе автоанализатора необходимы для того, чтобы отделить отобранные пробы друг от друга. При этом пузырьки воздуха специально подаются в гидравлическую систему по отдельному каналу, а также попадают в нее во время нахождения заборной иглы в воздухе в момент переноса ее из промывочной склянки в кассету с пробами и обратно.
Перед поступлением отобранной и окрашенной пробы в проточную кювету спектрофотометра автоанализатора пузырьки воздуха должны быть удалены из гидравлического канала с помощью специальной конструкции пузырькоотделителя. В противном случае они будут перекрывать световой поток в кювете, и искажать результаты определения химического состава пробы.
Точность измерения химического состава анализируемой пробы с использованием указанного оборудования зависит от степени промывки дистиллированной водой гидравлического канала после ввода в него текущей пробы перед отбором следующей.
В ряде случаев при большой разнице в концентрации определяемого показателя в следующих друг за другом пробах время промывки может быть значительным. Это приводит к снижению производительности аналитических работ в лабораториях, выполняющих массовые анализы. Кроме этого, если анализируемые жидкие пробы имеют плотность, сильно отличающуюся от основного носителя гидравлического потока (дистиллированная вода) или они вступают с ним в химическую реакцию, то на границах пробы и носителя возникают сильные турбулентные потоки, что приводит к невозможности проведения химического анализа. Например, при анализе гумуса в почве, с использованием указанных автоанализаторов, анализируемая проба содержит серную кислоту, которая при соприкосновении с дистиллированной водой начинает нагреваться, что вызывает описанный эффект и невозможность проводить определение этого показателя.
Предложенное изобретение устраняет изложенные выше недостатки.
Предложенный способ включает автоматический ввод анализируемых проб с помощью автомата подачи проб и перистальтического насоса в многоканальную гидравлическую систему, нагревание гидравлического потока в термостатирующем устройстве в колориметрическом канале и непрерывное измерение оптической плотности гидравлического потока, проходящего через проточную кювету спектрофотометра (колориметра) или непрерывное измерение эмиссии пламени в горелке пламенного фотометра в определенной области спектра и регистрации регистрограмм с помощью компьютерной системы и программных средств. Суть изобретения заключается в том, что из гидравлической системы убирают каналы подачи воздуха и промывочной жидкости, а попадающие в гидравлическую систему пузырьки воздуха при манипуляции канюли автомата подачи проб не удаляют перед поступлением гидравлического потока в кювету колориметра или в горелку пламенного фотометра, а пропускают через кювету колориметра или горелку пламенного фотометра и измерение оптической плотности или интенсивности излучения производят на отрезке гидравлического потока между пузырьками воздуха. Функциональная схема определения фосфора и калия на автоанализаторе проточного типа по предложенному изобретению показана на фиг.1.
В гидравлической системе определения фосфора оставляют канал 7 подачи пробы и канал 9 подачи окрашивающего реактива 1. В гидравлической системе определения калия оставляют канал 8 подачи пробы и канал 10 дистиллированной воды 3 для разбавления пробы.
Автоматический ввод анализируемых проб в многоканальную гидравлическую систему автоанализатора производят с помощью автомата подачи 2 проб и перистальтического насоса 4. Разделение гидравлического потока в канале 5 отбора жидкой пробы происходит в разделителе 6 на два канала: канал 7 подачи пробы для определения фосфора и канал 8 подачи пробы для определения калия.
В гидравлической системе для определения фосфора соединение потоков канала 9 и канала 7 происходит в смесителе 11. Далее нагревание и смешивание гидравлических потоков происходит в термостатирующем устройстве 13 для быстрого развития окраски проб. После нагревания гидравлический поток охлаждается в холодильнике 15 проточной водой, поступающей по каналу 16 и сбрасываемой по каналу 17 в коллектор 20 и канализацию 21. Затем охлажденный поток поступает в проточную кювету колориметра (спектрофотометра) 18 с непрерывным измерением оптической плотности в определенной области спектра.
В гидравлической системе для определения калия соединение потоков канала 8 и канала 10 происходит в смесителе 12. Далее потоки смешиваются в спиралиевидном змеевике 14 и поступают в распылитель и горелку пламенного фотометра, где происходит непрерывное измерение эмиссии пламени в определенной области спектра.
Регистрация измерений и необходимые расчеты концентрации определяемых элементов осуществляется с помощью компьютерной системы и программных средств. На фиг.2 показана фотография разработанного авторами автоанализатора проточного типа для определения фосфора и калия в почвенных вытяжках: слева направо - емкости с реактивами; автомат подачи проб с кассетами; перистальтический насос с рабочими трубками; жидкостной термостат с гидравлической системой, спиралями и смесителями; холодильник с охлаждаемой спиралью (не виден за термостатом); пламенный фотометр с колориметром, закрепленным на боковой стенке пламенного фотометра. Компьютерная система, управляющая автоанализатором, не показана на фотографии.
В предложенном способе определения химического состава жидкостей попадание воздуха в гидравлическую систему происходит только в момент переноса заборной иглы от пробы к пробе в автоматическом пробоотборнике 2. При этом эти пузырьки воздуха не удаляются из гидравлической системы, а проходят через кювету колориметра 18 или горелку пламенного фотометра 19 (фиг.1). В этом случае моменты ввода пробы в кювету и выхода из нее в колориметрическом канале определяют на мониторе компьютера резкими увеличениями оптической плотности II (фиг.3) из-за пузырьков воздуха, которые попадают в заборную иглу и далее в кювету колориметра при переносе заборной иглы от пробы к пробе.
На фиг.3 показано изображение регистрограммы определения гумуса в почве на проточно-дискретном анализаторе, работающем на предложенном способе определения химического состава жидких проб. Острые пики II определяют момент прохождения пузырьков воздуха через кювету колориметра. Между пиками маркеры в виде кружка I показывают момент измерения содержания гумуса в почве. Измерение оптической плотности производят в момент между входом пузырьков воздуха в кювету и выходом из нее.
Предлагаемый способ обеспечивает промывку проточной кюветы от предыдущей пробы не дистиллированной водой, а самой анализируемой пробой и пузырьком воздуха, проходящим через кювету и работающим как поршень. В этом случае резко уменьшается влияние предыдущей пробы на последующую, что приводит к повышению точности измерений и повышению производительности аналитических работ.
В пламенно-фотометрическом канале моменты ввода пробы в горелку прибора и выхода из нее определяют резкими уменьшениями величины сигналов, между которыми производят измерение концентрации определяемого элемента с тем же эффектом.
В предлагаемом изобретении могут быть использованы два режима измерений:
1) с непрерывной работой перистальтического насоса для колориметрического и пламенно-фотометрического каналов в проточном автоанализаторе,
2) с остановкой перистальтического насоса только для колориметрических измерениий в момент нахождения пробы в кювете колориметра в проточно-дискретном анализаторе
При использовании предлагаемого изобретения время измерения концентраций определяемых элементов сокращается в два раза и увеличивается точность определения анализируемого показателя.
Класс G01N21/27 с помощью фотоэлектрических средств обнаружения