газовый сенсор для индикации оксидов углерода и азота

Классы МПК:G01N27/12 твердого тела в зависимости от абсорбции текучей среды, твердого тела; в зависимости от реакции с текучей средой 
Автор(ы):,
Патентообладатель(и):Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" (RU)
Приоритеты:
подача заявки:
2011-06-16
публикация патента:

Изобретение может быть использовано при анализе воздуха на наличие в нем газообразных примесей, в частности оксидов азота и оксида углерода. Газовый сенсор для индикации оксидов углерода и азота включает выполненную из поликристаллического Al2 O3 подложку, диоксид олова в составе чувствительного к газу материала, измерительные элементы, выполненные в виде платиновых электродов, размещенных на лицевой стороне подложки, средства нагрева и съема сигнала с измерительных элементов. Чувствительный к газу слой нанесен между измерительными элементами, средства нагрева выполнены в виде платинового тонкопленочного или толстопленочного нагревателя и размещены на обратной от электродов стороне подложки. В состав чувствительного слоя из нанокристаллического диоксида олова введены наночастицы оксида никеля и золота. Изобретение обеспечивает повышение чувствительности газового сенсора. 1 з.п. ф-лы, 3 пр.

Формула изобретения

1. Газовый сенсор для индикации оксидов углерода и азота, включающий выполненную из поликристаллического Al2 O3 подложку, диоксид олова в составе чувствительного к газу материала, выполненные в виде платиновых электродов, размещенных на лицевой стороне подложки, измерительные элементы, средства нагрева и съема сигнала с измерительных элементов, причем чувствительный к газу слой нанесен между измерительными элементами, средства нагрева выполнены в виде платинового тонкопленочного или толстопленочного нагревателя и размещены на обратной от электродов стороне подложки, при этом в состав чувствительного слоя из нанокристаллического диоксида олова дополнительно введены наночастицы оксида никеля и золота.

2. Газовый сенсор по п.1, отличающийся тем, что содержание золота составляет 0,02-2% от общего веса чувствительного слоя, средний размер частиц золота составляет от 1,5 до 150 нм, а мольное соотношение Au/Ni выбрано в пределах от 10:1 до 0,5:1.

Описание изобретения к патенту

Настоящее изобретение относится к газовым сенсорам, конкретно - к сенсорным устройствам, предназначенным для индикации оксидов углерода (CO) и азота (NO2).

Сенсорные устройства широко применяются в технике, промышленности и системах безопасности для детектирования токсичных газов, включая оксиды углерода и азота. Пристальное внимание уделяется устройствам на основе полупроводниковых оксидов металлов, в частности - оксида олова SnO2. Механизм действия подобных устройств основан на изменении электропроводности полупроводников n-типа проводимости в ходе происходящих на их поверхности химических превращений, например взаимодействия моноксида углерода с хемосорбированным кислородом. Сенсоры на основе SnO2 характеризуются невысокой стоимостью, хорошей скоростью отклика и рядом других преимуществ. В то же время их типичными недостатками являются длительный период сброса показаний и их зависимость от влажности; в ряде случаев чувствительность таких сенсоров также оказывается недостаточной. С целью устранения отмеченных недостатков и повышения чувствительности в сенсорных устройствах используется введение каталитически активного металла (чаще всего - металла платиновой группы) либо непосредственно в объем полупроводникового оксида, либо в виде отдельного каталитического слоя.

Известно сенсорное устройство для индикации моноксида углерода, включающее изолирующую подложку с измерительными электродами, слой полупроводникового оксида и каталитический слой, содержащий один из следующих металлов - Pt, Rh, Pd на оксидном носителе и нагревательный элемент (патент США 4792433, МКИ G01N 20/16, 1988). Указанное устройство обеспечивает сравнительно высокую чувствительность по моноксиду углерода при умеренной температуре нагревательного элемента (120° и ниже). Недостатками предложенного устройства являются, однако, низкая стабильность сенсора, вызванная деградацией структуры чувствительного слоя полупроводникового оксида.

Описано также сенсорное устройство для индикации моноксида углерода, в котором в качестве активного компонента используется оксид олова с тонко диспергированной платиной, причем для создания оптимальной пористой структуры активного слоя используются добавки силикатов, таких как полевые шпаты и бентонит (патент Великобритании 2249179, МКИ G01N 27/12, 1992). Преимуществом устройства является возможность раздельного определения оксида углерода и водорода. В то же время, электрическое сопротивление чувствительного слоя оказывается чрезмерно высоким, что затрудняет измерение сенсорного сигнала и значительно усложняет конструкцию детектора.

Известен способ анализа полупроводниковыми сенсорами газовой смеси, содержащей горючие газы, такие как CO и H2. В качестве газочувствительного слоя использовался диоксид олова, допированный сурьмой. Полученные по данному изобретению пленки SnO2 обнаружили высокую чувствительность к H2 и CO в атмосферах O2 /N2 и O2/N2/паров-H2 O. Температурный интервал чувствительности сенсоров, полученных данным методом, составляет 200-550°С (U.S. Pat. № 4,614,669, 30.09.1986).

Известен способ сенсорного анализа газовой смеси, содержащей газы-восстановители (CO и H 2) и кислород. В качестве катализаторов, повышающих чувствительность газочувствительного слоя на основе диоксида олова к СО и Н 2, использовались RuCl3 и PtCl2. В способе установлено, что оптимальные концентрации RuCl 3 и PtCl2 в SnO2 для обнаружения СО и Н2 составляют 1-5 мол.%. Ru и Pt, которые вводились в матрицу методом пропитки диоксида олова хлоридами этих элементов. Полученные пленки на основе данных веществ могут быть использованы в температурном интервале 200-350°С (U.S. Pat. № 4397888, 9.08.1983).

Известен способ анализа газовой смеси, содержащей СО. В данном исследовании в качестве сенсорного материала использовали диоксид олова, допированный Ir и Pt. Допирование Ir и Pt проводилось методом пропитки диоксида олова солями Ir и Pt с дальнейшим отжигом с целью разложения солей этих элементов. Далее порошок SnO2 был пропитан водным раствором тиомочевины для уменьшения чувствительности к влажности газовой смеси. Таким образом, в данном исследовании был получен сенсор, в котором была увеличена чувствительность сенсора по отношению к СО с помощью каталитических добавок и уменьшена чувствительность к влажности рабочей атмосферы (U.S. Pat. № 6319473, 20.11.2001).

Известен способ анализа газовой смеси, содержащей оксиды азота (NOx), в котором сенсор сделан на основе полупроводникового оксида (SnO2 , TiO2), сопротивление которого изменяется в присутствии различных концентраций NOx. Изучаемый газ пропускается через катализатор, который удерживает парциальные давления в равновесной системе NO/NO2 постоянными. Данный способ позволяет проводить исследования взаимодействия с NOx с довольно высокой точностью. Катализатор в данном исследовании позволяет разделить в потоке газовой смеси CO от NOx , что позволяет получить селективный сенсор на NOx (U.S. Pat. № 5705129, 6.01.1998).

Известен способ анализа газовой смеси, содержащей NOx, в котором в качестве чувствительного сенсора использовались парные электроды, сформированные на основе твердых электролитов и гибридных оксидов с перовскитной структурой, такой как MSnO3 (где М - Mg, Са, Sr, Ba, Mn, Co, Ni, Zn и Cd) и псевдоперовскитной структурой, такой как M2SnO4 (где М - Mg, Ca, Sr, Ba, Mn, Со, Zn и Cd) или из подложки, приготовленной из указанных гибридных оксидов и благородных металлов (Au, Pt) в качестве парного электрода (U.S. Pat. № 5897759, 27.04.1999).

Также известно решение, раскрывающее использование в датчиках сенсорного материала, приготовленного путем нанесения на подложку пасты из смеси сурьмасодержащего вещества и диоксида олова, с дальнейшей сушкой и отжигом этой пасты. Добавление сурьмасодержащего вещества в диоксид олова увеличивает чувствительность по отношению к CO, H2 , CH4. Преимущественная концентрация сурьмы, которая в диоксиде олова присутствует в виде оксида сурьмы, составляет 2 мас.%. Указанное решение соотносится с газовыми сенсорами, в которых измеряется сопротивление или какое-либо другое электрическое свойство диоксида олова в газовой смеси, содержащей изучаемый газ (U.S. Pat. № 5427740, 27.06.1995).

Недостатком указанного решения является то, что максимальный сигнал сенсора при детектировании указанных газов-восстановителей достигается при температуре примерно 500°C, что очень неудобно при создании миниатюрных газовых сенсоров и их использовании. Также упомянутое решение позволяет обнаружить концентрации газов-восстановителей при очень высоких концентрациях (примерно 1000 ppm), тогда как практический интерес представляют концентрации намного ниже указанных.

В работе I.Hotovy, J.Huran и др. (J. Phys., 2007, v.61, p.435) предложено использовать для детектирования газов, в частности - водорода, сверхтонкую (1-7 нм) пленку золота, нанесенную на нанокристаллический оксид никеля методом магнетронного напыления. Недостатком предложенного материала является сложность технологии его получения и очевидная трудность создания устройств на его основе.

В основу настоящего изобретения положена задача повышения чувствительности сенсора и понижение его рабочей температуры при детектировании в воздухе, в частности, оксидов углерода и азота.

Для этого предложен газовый сенсор для индикации оксидов углерода и азота, включающий выполненную из поликристаллического А12О3 подложку, диоксид олова в составе чувствительного к газу материала, выполненные в виде платиновых электродов, размещенных на лицевой стороне подложки, измерительные элементы, средства нагрева и съема сигнала с измерительных элементов, причем чувствительный к газу слой нанесен между измерительными элементами, средства нагрева выполнены в виде платинового тонкопленочного или толстопленочного нагревателя и размещены на обратной от электродов стороне подложки, при этом в состав чувствительного слоя из нанокристаллического диоксида олова дополнительно введены наночастицы оксида никеля и золота, при этом содержание золота составляет 0.02-2% от общего веса чувствительного слоя, средний размер частиц золота составляет от 1.5 до 150 нм, а мольное соотношение Au/Ni выбрано в пределах от 10:1 до 0.5:1.

Поставленная задача решается формированием устройства, функции которого обеспечены введением каталитических добавок (Au, Ni) в матрицу SnO2. Золото и никель вводились в SnO2 методом золь-гель технологии. Полученные вещества отжигались на воздухе. Золото и никель в матрице SnO2 находятся в виде наночастиц Au и NiO в концентрации в диапазоне 0.3-2,5 мол.%.

На основе сенсорного материала изготавливали и тестировали газовые сенсоры, включающие в себя в качестве основных элементов изолирующую подложку из поликристаллического Al2O3 с платиновыми измерительными электродами на лицевой стороне, платиновым тонкопленочным нагревателем на обратной стороне и чувствительный слой на основе пористой толстой пленки нанокристаллического SnO2, нанесенного между измерительными электродами. Сенсорные свойства указанных сенсоров определялись in situ измерением сопротивления сенсора в атмосфере исследуемых газов.

Сигнал сенсора рассчитывался как отношение максимального сопротивления сенсора в присутствии газа окислителя к сопротивлению на воздухе или как отношение сопротивления на воздухе к минимальному сопротивлению сенсора в присутствии газа-восстановителя.

Было установлено, что отдельное введение золота или никеля увеличивает величину сенсорного сигнала по сравнению с чистым диоксидом олова и понижает температуру, при которой наблюдается максимальный сигнал сенсора. При этом совместное присутствие Au и NiO оказывает неаддитивное влияние на увеличение сенсорного сигнала диоксида олова. В этом случае наблюдается синергетический эффект.

Ниже приведены примеры проведенных экспериментов.

Пример 1. Формирование элементов сенсора на основе приготовленных сенсорных материалов.

Порошки ультрадисперсных композиций на основе оксида олова получены осаждением геля газовый сенсор для индикации оксидов углерода и азота, патент № 2464554 -оловянной кислоты из раствора путем гидролиза раствором аммиака и последующей пропиткой геля растворами соответствующих солей.

1. Стадия синтеза - получение геля газовый сенсор для индикации оксидов углерода и азота, патент № 2464554 -оловянной кислоты

К охлаждаемому на ледяной бане раствору SnCl4·5H2O (40 г на 160 мл воды) при постоянном перемешивании по каплям добавляют 25%-ный раствор NH3 до образования плотного осадка (pH~6.5):

SnCl4+NH3·H 2Oгазовый сенсор для индикации оксидов углерода и азота, патент № 2464554 SnO2·xH2Oгазовый сенсор для индикации оксидов углерода и азота, патент № 2464554 +NH4Cl

Полученный гель газовый сенсор для индикации оксидов углерода и азота, патент № 2464554 -оловянной кислоты многократно промывают дистиллированной водой и 1% раствором NH4+NO3 (для лучшей коагуляции золя) с последующим центрифугированием и декантацией до полного отсутствия реакции на хлорид-ионы:

2. Стадия - модификация поверхности диоксида олова золотом и оксидом никеля.

К навеске (2 г) высушенного геля SnO2 добавляют рассчитанный объем раствора модификаторов HAuCl4 и Ni(СН3СОО)2. Смесь при постоянном перемешивании нагревают в фарфоровой чашке до полного выпаривания раствора.

Полученные порошки высушивают в сушильном шкафу при 80°C в течение 40 часов, после чего тщательно перетирают в ступке. Синтезированные прекурсоры отжигают в сушильном шкафу в температурном режиме:

80°C - 24 час, 120°C - 10 час, 160°C - 10 час, 200°C - 10 час, 300°C - 10 час и 350°C - 24 час.

На основе полученных ингредиентов формируют газовый сенсор, согласно представленной совокупности существенных признаков.

Газовый сенсор для индикации оксидов углерода и азота включает выполненную из поликристаллического Al2O 3 подложку, диоксид олова в составе чувствительного к газу материала, выполненные в виде платиновых электродов, размещенных на лицевой стороне подложки, измерительные элементы, средства нагрева и съема сигнала с измерительных элементов, причем чувствительный к газу слой нанесен между измерительными элементами, средства нагрева выполнены в виде платинового тонкопленочного или толстопленочного нагревателя и размещены на обратной от электродов стороне подложки, при этом в состав чувствительного слоя из нанокристаллического диоксида олова дополнительно введены наночастицы оксида никеля и золота, при этом содержание золота составляет 0.02-2% от общего веса чувствительного слоя, средний размер частиц золота составляет от 1.5 до 150 нм, а мольное соотношение Au/Ni выбрано в пределах от 10:1 до 0.5:1.

Пример 2. Детектирование NO 2

Полученный сенсор помещали в ячейку, подключенную к считывающему прибору. В ячейку пропускали исследуемую газовую смесь. При этом проводились in situ измерения сопротивления сенсора. Так как NO2 газ окислитель, то в его потоке сопротивление сенсора увеличивалось, а в потоке воздуха уменьшалось. Детектирование NO2 проводили в интервале температур 100-200°C и при концентрации газа 800 ppb. Исследование сенсорных свойств проводилось при циклическом изменении потока воздуха и потока газовой смеси, содержащей NO2. Суммарный поток газа над сенсором оставался постоянным и составлял 100 мл/мин.

В результате эксперимента было установлено, что сенсорный сигнал на 800 ppb NO2 при добавлении в SnO2 только Ni увеличивается в 22.4 раза, при добавлении только Au - в 46.7 раз, а при совместном введении Au и Ni - 72.9 раза.

Если в случае чистого SnO2 максимальный сигнал сенсора наблюдается при 150°C, то введение описанных добавок уменьшает температуру максимума до 125°С.

Пример 3. Детектирование СО

Исследование проводились аналогично описанным в примере 1 последовательностям использования предложенного сенсора. Концентрация СО в потоке газовой смеси составляла 10 ppm, температурный интервал исследований 150-450°С. Так как CO газ-восстановитель, то в его потоке сопротивление сенсора уменьшалось, тогда как в потоке воздуха увеличивалось. Было установлено, что при добавлении только Ni в SnO2 сигнал сенсора увеличивался в 1.14 раз, при добавлении только Au - в 3.35 раз, при совместном введении Au и Ni - в 2.75 раза.

Если в случае чистого SnO2 максимальный сигнал сенсора наблюдается при 450°C, то введение описанных добавок уменьшает температуру максимума до 250°C.

Как видно из приведенных примеров, предложенное решение пригодно для обнаружения низких концентраций различных токсичных газов, находящихся в воздухе, он позволяет снизить температуру максимального сигнала сенсора, является чувствительным и точным.

Из приведенных примеров также видно, что при совместном присутствии CO и NO2 можно провести селективное обнаружение последнего, т.к. его вклад в суммарную величину сигнала будет значительно больше.

Таким образом, предложенное решение позволяет с высокой достоверностью проводить мониторинг воздуха на наличие примесей различной природы.

Класс G01N27/12 твердого тела в зависимости от абсорбции текучей среды, твердого тела; в зависимости от реакции с текучей средой 

полупроводниковый газовый датчик -  патент 2528118 (10.09.2014)
способ изготовления чувствительного элемента датчиков газов с углеродными нанотрубками -  патент 2528032 (10.09.2014)
полупроводниковый газоанализатор -  патент 2526226 (20.08.2014)
газовый датчик -  патент 2526225 (20.08.2014)
способ калибровки полупроводниковых сенсоров газа и устройство для его осуществления -  патент 2523089 (20.07.2014)
электрический сенсор на пары гидразина -  патент 2522735 (20.07.2014)
способ получения газочувствительного материала на основе оксида цинка к парам ацетона -  патент 2509302 (10.03.2014)
способ измерения полисостава газовых сред -  патент 2504760 (20.01.2014)
электрохимический сенсор и способ его получения -  патент 2502992 (27.12.2013)
способ определения остаточной водонасыщенности и других форм связанной воды в материале керна -  патент 2502991 (27.12.2013)
Наверх