способ получения удобрений из навоза

Классы МПК:C05F3/00 Удобрения из фекалий человека или животных, в том числе навоз
Автор(ы):, , , , ,
Патентообладатель(и):Государственное научное учреждение Северо-Западный научно-исследовательский институт механизации и электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ СЗНИИМЭСХ Россельхозакадемии) (RU)
Приоритеты:
подача заявки:
2011-04-07
публикация патента:

Изобретение относится к сельскому хозяйству. Способ получения удобрения из навоза, который включает разделение навоза на жидкую и твердую фракции, термофильную аэробную обработку и вторичное глубокое разделение с применением флокулянтов, причем жидкую фракцию подвергают термофильной обработке до окисления до 40% органических веществ, после чего она смешивается с 5% исходной жидкой фракцией и подвергается обработке в анаэробных условиях методом денитрификации в течение 10 часов. Изобретение позволяет повысить степень разделения навоза на фракции, накопить активизирующих рост растений веществ и стабилизировать агрохимический состав питательного раствора. 1 ил., 4 табл. способ получения удобрений из навоза, патент № 2466117

способ получения удобрений из навоза, патент № 2466117

Формула изобретения

Способ получения удобрения из навоза, включающий разделение навоза на жидкую и твердую фракции, термофильную аэробную обработку и вторичное глубокое разделение с применением флокулянтов, отличающийся тем, что жидкую фракцию подвергают термофильной обработке до окисления до 40% органических веществ, после чего она смешивается с 5%-ной исходной жидкой фракцией и подвергается обработке в анаэробных условиях методом денитрификации в течение 10 ч.

Описание изобретения к патенту

Изобретение относится к области сельского хозяйства, к способам получения удобрений из навоза для использования в закрытом грунте.

Известен способ получения удобрений из стоков животноводческих помещений (патент РФ № 2093981, кл. А01G 31/00), включающий подачу в растильные ванны жидких животноводческих стоков, предварительно подготовленных путем отделения твердой фракции, биологической и термической обработкой жидкой фракции, а также возвратных неиспользованных растениями стоков. Термическую обработку осуществляют перед биологической, а биологическую обработку как вновь поступивших, так и возвратных стоков, неиспользованных растениями, осуществляют в резервуаре гидропоникума.

Недостатками данного способа являются:

- необходимость разбавления жидкой фракции стоками, что увеличивает выход питательного раствора и требует дополнительных дорогостоящих площадей для его утилизации;

- необходимость наличия в технологии энергоемкого узла обеззараживания на пароструйной установке повышенного давления и высокой температуры;

- сезонное использование способа, так как в летний период используется дешевый полевой зеленый корм. Это приводит к накоплению сточных вод и неизбежному загрязнению окружающей среды.

Наиболее близким аналогом к заявленному способу является способ, где используется жидкая фракция навоза, полученная после механического разделения с последующей биологической обработкой в аэротанках при температуре 53-56°С. Биологическая обработка жидкой фракции при таких условиях в высокотемпературных аэротенках (термотенках) в течение 30-40 часов обеспечивает получение обеззараженной, незагнивающей, не имеющей запаха, богатой питательными и органическими веществами жидкости в легкоусвояемых растениями формах, пригодной для тепличного выращивания растительной продукции без ее заражения болезнетворными микроорганизмами (сб. науч. трудов НИПТИМЭСХ НЗ РСФСР «Способы и средства механизации и автоматизации работ и процессов на животноводческих фермах и комплексах в Нечерноземной зоне РСФСР», № 43 Л-д 1984, с.83-86).

Создание в термотенке термофильного состава активного ила при температуре 53-56°С по заключению кафедры микробиологии и вирусологии Ленинградского ветеринарного института обеспечивает получение жидкости, не содержащей болезнетворных микроорганизмов.

Недостатки:

1) полученная жидкая фракция имеет повышенное содержание избыточного активного ила, образующегося при термофильной биологической обработке, и других органических взвешенных и коллоидных частиц, способных к дальнейшему окислению;

2) нестабильный агрохимический состав вследствие неполного окисления органических веществ.

Задача изобретения - повышение степени разделения навоза на фракции, накопления активизирующих рост растений веществ и стабилизации агрохимического состава питательного раствора.

Поставленная задача решается за счет того, что в способе получения удобрений из навоза, включающем разделение навоза на жидкую и твердую фракции, термофильную аэробную обработку и вторичное глубокое разделение с применением флокулянтов, жидкую фракцию подвергают термофильной обработке до окисления до 40% органических веществ, после чего она смешивается с 5% исходной жидкой фракцией и подвергается обработке в анаэробных условиях методом денитрификации в течение 10 часов.

Новые существенные признаки:

1) жидкую фракцию после разделения навоза подвергают термофильной аэробной обработке до окисления до 40% органических веществ;

2) смешивание обработанной жидкой фракции с 5% исходной жидкой фракцией;

3) обработка смеси в анаэробных условиях методом денитрификации в течение 10 часов.

Перечисленные новые существенные признаки в совокупности с известными необходимы и достаточны для достижения технического результата во всех случаях, на которые распространяется испрашиваемый объем правовой охраны.

Технический результат.

1. Термофильная аэробная обработка жидкой фракции до окисления до 40% органических веществ, что дает накопление питательных и органических веществ жидкости в легкоусвояемых растениями формах, что видно по результатам проверки получаемой жидкости в полевых опытах (табл.1).

Таблица 1.
Влияние степени разложения органического вещества жидкой фракции навоза КРС на урожайность цветов при выращивании в закрытом грунте
% разложения органических веществ Урожайность цветов
Высота растений, см (ср. из 75 значений) Кол-во стеблей, шт./раст. (ср. из 75 значений) Кол-во цветоносов, шт./раст. (ср. из 75 значений)
Астра
Контроль (без обработки) 6,063,1 способ получения удобрений из навоза, патент № 2466117
207,64 3,41способ получения удобрений из навоза, патент № 2466117
308,12 3,6способ получения удобрений из навоза, патент № 2466117
408,77 4,0способ получения удобрений из навоза, патент № 2466117
508,50 3,8способ получения удобрений из навоза, патент № 2466117
Агератум
Контроль (без обработки) 18,943,47 способ получения удобрений из навоза, патент № 2466117
2021,60 3,80способ получения удобрений из навоза, патент № 2466117
3023,42 3,96способ получения удобрений из навоза, патент № 2466117
4022,32 3,82способ получения удобрений из навоза, патент № 2466117
5020,70 3,60способ получения удобрений из навоза, патент № 2466117
Бархатцы
Контроль (без обработки) 9,204,45 1,16
20 9,84 4,631,32
30 10,404,87 1,46
40 9,80 4,601,28
50 9,524,34 1,20

2. Смешивание обработанной жидкой фракции с 5% исходной жидкой фракцией, что обеспечивает поступление свежего органического вещества для химического разложения нитратных форм азота, накопленных при аэробной биологической обработке жидкой фракции.

3. Обработка смеси в анаэробных условиях методом денитрификации в течение 10 часов, что обеспечивает в присутствии свежего органического вещества биохимическое разложение нитратных форм азота на азот и углекислый газ и снижение концентрации азота в жидкой фракции до 10 раз.

Высокая эффективность и экономичность такой питательной среды для выращивания растительной продукции в теплицах подтверждена лабораторными исследованиями и опытно-производственной проверкой на установках в совхозе «Ленсоветовский» Ленинградской области и в тепличном хозяйстве учебно-экспериментальной базы Ленинградского государственного Университета им. А.С.Пушкина. Проверка предлагаемого метода подготовки питательного раствора и его применения в теплице на цветах розах и каллах показала, что подкормка цветочных культур раствором на основе подготовленной жидкой фракции навоза крупного скота положительно влияет на рост и развитие цветочных культур, обеспечивая при этом рост сбора цветов розы на 27%, а цветов калл на 15% по сравнению с контролем при расходе жидкости 6,5 л/м2 и 5,5 л/м2 в сутки (55-65 м3 на 1 гектар теплицы в сутки) соответственно.

На фиг.1 схематично изображена технологическая схема устройства для получения удобрения из навоза.

Устройство состоит из резервуара 1, в котором установлены мешалка 2 и насос 3, через который резервуар 1 соединен с сепаратором 4, первый выход которого через транспортер (на фиг. не показан) связан с площадкой компостирования, а второй выход соединен с промежуточной емкостью 5, выход которой через насос 6 связан с резервуаром 7 термофильной аэробной обработки, к которому подсоединен компрессор 8 и в нижней части установлена мешалка 9. Выход резервуара 7 соединен через промежуточный резервуар 10 с мешалкой 11, насосом 12, динамическим смесителем 13 и башенным смесителем 14 с ленточным сгустителем 15. Узел подготовки флокулянта состоит из бункера со шнековым дозатором сухого флокулянта 16, дозатора воды и резервуара с мешалкой 17, который через насос 18 и станцию разбавления флокулянта 19 соединен с динамическим смесителем 13, установленным на линии подачи жидкой фракции от промежуточного резервуара 10 к ленточному сгустителю 15. Один выход ленточного сгустителя 15 связан с баком промывной воды 20, а через насос 21 - с системой промывки, второй выход ленточного сгустителя 15 связан с промежуточным резервуаром 23, третий выход ленточного сгустителя 15 связан с ленточным пресс-фильтром 22. Один выход ленточного пресс-фильтра 22 через транспортер (на фиг. не показан) связан с площадкой компостирования, второй выход ленточного пресс-фильтра 22 связан с промежуточным резервуаром 23, в котором установлены мешалка 24 и насос 25. Промежуточный резервуар 23 через насос 25 связан с резервуаром-денитрификатором 26 с мешалкой 27, который связан с отстойником 28. Один выход отстойника 28 связан со сборником очищенной жидкой фракции 29, который связан с теплицей, второй выход отстойника 28 связан с резервуаром избыточного активного ила 30, который через насос 31 связан с резервуаром 7 термофильной аэробной обработки. Компрессор 32 связан с системой продувки ленточного сгустителя 15 и ленточного пресс-фильтра 22. Вентилятор 33 ленточного сгустителя 15 связан с атмосферным воздухом.

Устройство работает средующим образом. Жидкий навоз влажностью 92-93% из фермы поступает в приемный резервуар 1, где с помощью мешалки 2 поддерживается однородное состояние. Далее насосом 3 навоз подается на сепаратор 4 для разделения на твердую и жидкую фракции. Твердая фракция направляется на площадку компостирования с последующим использованием для удобрения полей, жидкая фракция влажностью 96-97% самотеком поступает в промежуточную емкость 5 и далее насосом 6 в резервуар 7 термофильной биологической обработки. В резервуаре 7 термофильной биологической обработки, работающем в термофильном режиме, окисление органического вещества навоза достигает 40-50%, что обеспечивает выделение тепла 24способ получения удобрений из навоза, патент № 2466117 30 ккал/л. Температура в термотенке 7 устойчиво поддерживается в пределах 53-60°С. Создание в термотенке термофильного состава активного ила при температуре 53-56°С по заключению кафедры микробиологии и вирусологии Ленинградского ветеринарного института обеспечивает получение жидкости, не содержащей болезнетворных микроорганизмов.

Кроме того, в процессе темофильной обработки по мере увеличения степени разложения органического вещества происходит накопление питательных и органических веществ жидкости в легкоусвояемых растениями формах, что видно по результатам проверки получаемой жидкости в полевых опытах (табл.1).

Термофильно обработанная жидкая фракция далее поступает в промежуточную емкость 10, откуда насосом подается через башенный смеситель 14 на ленточный сгуститель (гравитационный стол) 15. Для повышения эффективности выделения сухих веществ в жидкую фракцию перед вторичным разделением вводится водный раствор высокомолекулярного полиэлектролита-флокулянта из расчета 3,0-4,0 кг сухого порошка на 1 т сухих веществ раствора флокулянта. Раствор готовится в специальном устройстве. Сухой порошок флокулянта засыпается в бункер 16, который, например, шнековым дозатором (на фиг. не показан) подается в смесительный бак 17, туда же подается водопроводная вода. В смесительном баке 17 готовится раствор флокулянта с концентрацией 0,5%. После выдерживания приготовленного раствора при постоянном перемешивании в течение времени затворения, рекомендованного производителем реагента (обычно 40-60 минут), можно использовать готовый раствор в технологии.

Приготовленный раствор посредством насоса-дозатора 18 подается на станцию точного разбавления 19 для получения рабочей концентрации от 0,5% до 0,2% и подается на смешивание с жидкой фракцией навоза с помощью динамического смесителя 13. С целью сокращения расхода водопроводной воды концентрированный раствор флокулянта доводится до рабочей концентрации 0,05-0,2% путем использования осветленной воды после ее отделения на ленточном сгустителе 15, которая подается насосом 21 из бака промывной воды 20 на станцию разбавления флокулянта 19. Насосом 21 из бака промывной воды 20 периодически жидкая фракция подается также в систему промывки ленточного сгустителя 15 и ленточнго пресс-фильтра.

Далее жидкая фракция навоза в смеси с флокулянтом через башенный смеситель 14, применяемый для «созревания» флокул смеси жидкой фракции и флокулянта, направляется на ленточный сгуститель (гравитационный стол) 15 для непрерывного ее сгущения перед окончательным обезвоживанием на ленточном фильтр-прессе 22. После ленточного сгустителя 15 предварительно сгущенная фракция влажностью 88-90% направляется на ленточнй фильтр-пресс 22, а наиболее чистая осветленная вода направляется в бак промывной воды 20, остальная часть - в промежуточный резервуар 23. Промывная вода используется на приготовление рабочего раствора флокулянта и для промывки лент ленточного сгустителя 15 и ленточнго пресс-фильтра 22. Периодическая очистка лент проводится дополнительно методом продувки сжатым воздухом от компрессора 32. Загрязненый воздух, образующийся в процессе обработки жидкой фракции на ленточном сгустителе 15, удаляется в атмосферу вентилятором 33.

После обработки на фильтр-прессе твердая фракция влажностью 68-70% направляется на площадку компостирования, а осветленная вода направляется в промежуточный резервуар 23. Характеристика полученной осветленной воды представлена в табл.2.

Таблица 2.
Показатели жидкой фракции навоза КРС в процессе обработки
Показатели Исходный навоз Показатели жидкой фракции в процессе обработки после
Механического разделения Термофильной обработки и физико-химического разделения на ленточном фильтр-прессе
Сухое вещество, г/л70-80 28-303.6-4.3
Взвешенные вещества, г/л20-30 6-91.5-1.8
рН 6.0-7.56.0-7.5 6.5-7.5
Питательные вещества, мг/л
Nобщ2400-2800 1200-1400 1000-1200
NH41600-2000 1200-1600 300-400
NO 3следы 200-400 300-600
NO 2200-300 200-300 50-150
P 2O5 1200-1600600-800 400-500
K2O1000-1400 800-1000 600-800
CaO 1200-1500 800-1000400-600
MgO 6900-800300-400 200-250

С этой целью осветленная вода из промежуточной емкости 23, оборудованной мешалкой 24, насосом 25 перекачивается в резервуар-денитрификатор 26, оборудованный мешалкой 27, в этот же резервуар подается жидкая фракция навоза насосом 6 из промежуточной емкости 5 после разделения навоза на сепараторе 4 в объеме 5% от поступающей осветленной воды. Осветленная вода и жидкая фракция навоза подаются дозированно исходя из непрерывной обработки в денитрификаторе 26 в течение 10 часов (табл.3). Такой режим обработки обеспечивает стабилбное поддержание состава раствора в течение времени (до 10 суток), достаточного для использования раствора по назначению. При этом нитратные формы азота при наличии свежего органического вещества жидкой фракции навоза распадаются на элементарные элементы - азот и углекислый газ и улетучиваются в атмосферу. Для отделения взвешенных веществ из осветленной воды после денитрификатора 26 она поступает в отстойник 28, освободившись от взвешенных веществ, направляется в сборник питательного расствора 29.

Таблица 3.
Режим стабилизации свойств субстрата
% исходной жидкой фракции Продолжительность выдержки в анаэробных условиях, ч Длительность поддержания стабильности свойств, сут
Контроль 24025-30
3% 4815-20
5% 108-10
7% 88-10
10% 2012-15

Осветленная вода, отвечающая требованиям питательного раствора (табл.4), после агрохимического контроля состава по мере необходимости используется в теплице для удобрительного полива растений. Отделенные взвешенные вещества из отстойника 28 направляются в резервуар осадка 30 и насосом 31 возвращаются в резервуар 9 термофильной биологической обрвботки для повторной обработки.

Таблица 4.
Показатели питательных растворов
Показатели Показатели питательного раствора
на основе навозастандартный раствор
Сухое вещество, г/л0.3-0.5 0.3-0.5
Взвешенные вещества, г/л 0.1-0.2-
pH 7.0-7.57.0-7.5
Питательные вещества, мг/лспособ получения удобрений из навоза, патент № 2466117 способ получения удобрений из навоза, патент № 2466117
N общ150-220 140-180
NH4следы -
NO3следы -
NO2следы -
P2O5 120-15040-75
K2 O210-340 190-220
CaO 50-80 120-165
MgO 20-45 100-150

Класс C05F3/00 Удобрения из фекалий человека или животных, в том числе навоз

способ компостирования послеуборочных растительных остатков сельскохозяйственных культур -  патент 2529174 (27.09.2014)
способ приготовления компоста в биоферментере -  патент 2528813 (20.09.2014)
способ предпосевной обработки семян петрушки -  патент 2528044 (10.09.2014)
кавитационный способ обеззараживания жидкого навоза и помета и технологическая линия для безотходного приготовления органоминеральных удобрений -  патент 2527851 (10.09.2014)
аэрационный биореактор -  патент 2527300 (27.08.2014)
способ получения биогаза из экскрементов животных -  патент 2526993 (27.08.2014)
способ микробиологической переработки птичьего помета -  патент 2525251 (10.08.2014)
способ приготовления жидкого органического удобрения -  патент 2523839 (27.07.2014)
способ приготовления компоста -  патент 2522515 (20.07.2014)
способ получения жидкого гуминового удобрения -  патент 2520144 (20.06.2014)
Наверх