способ электрохимического получения раствора гипохлоритов магния и меди

Классы МПК:C25B1/26 хлор; его соединения
Автор(ы):,
Патентообладатель(и):Индивидуальный Предприниматель Богданов Сергей Анатольевич (RU)
Приоритеты:
подача заявки:
2011-07-01
публикация патента:

Изобретение относится к области получения растворов гипохлоритов электролизом, в частности к способу электрохимического получения раствора гипохлоритов магния и меди. Способ включает электролиз водного раствора хлоридов магния, полученных растворением природного бишофита, в непроточном бездиафрагменном электролизере с медными электродами, на которые подают электрический ток напряжением 3-5 В, при температуре электролита 20-25°С. При этом на медные электроды подают импульсный ток средней плотности 0,5-1,0 А/дм2, частотой 100-200 Гц и скважностью 2-4, при концентрации электролита 5-10% и рН 8-9. Электролиз осуществляют в течение 0,25-0,5 часа. Техническим результатом является увеличение выхода гипохлоритов меди и магния от 18 до 20% и снижение затрат электрической энергии на получение единицы продукта на треть. 3 табл.

Формула изобретения

Способ электрохимического получения раствора гипохлоритов магния и меди, включающий электролиз водного раствора хлоридов магния, полученных растворением природного бишофита, в непроточном бездиафрагменном электролизере с медными электродами, на которые подают электрический ток напряжением 3-5 В, при температуре электролита 20-25°С, отличающийся тем, что на медные электроды подают импульсный ток средней плотности 0,5-1,0 А/дм2, частотой 100-200 Гц и скважностью 2-4, при концентрации электролита 5-10% и рН 8-9, и электролиз осуществляют в течение 0,25-0,5 ч.

Описание изобретения к патенту

Способ электрохимического получения раствора гипохлоритов магния и меди.

Изобретение относится к области получения растворов гипохлоритов электролизом.

Известен способ получения раствора гипохлоритов магния, включающий электролиз раствора хлоридов металлов с использованием нерастворимого анода, при этом электролизу подвергают раствор, содержащий хлорид магния в виде бишофита, борную кислоту, сульфат магния и сульфат кальция при рН 4,5-6,0 в электролизере без диафрагмы с анодом из графита и катодом из титана при плотности тока 8-12 А/дм 2 и температуре 20-50°С (см. описание изобретения к авторскому свидетельству СССР № 1624057, МПК С25В 1/26, публикация 30.01.1991).

Недостатком известного способа является отсутствие растворимого анода. На используемом в качестве анода графите протекают реакции окисления хлорид-ионов с генерацией гипохлорит-ионов, что приводит к увеличению плотности тока. В остальном ионный состав используемого раствора остается неизменным.

В этом же источнике информации (см. № 1624057, пример 10, стр.5 и 6) описан способ получения раствора гипохлоритов магния, в котором для приготовления исходного раствора для электролиза берут 0,9 л воды, растворяют в ней 165 г кристаллического бишофита с содержанием 45% MgCl2 и получают 1 л исходного раствора, содержащего 70 г/л MgCl 2, pH 5,3. Электролиз проводят в электролизере без диафрагмы с анодом из графита и катодом из титана, при плотности тока 8 А/дм2, температуре электролита 30°C и напряжении 2,8-3,0 В в течение 4 часов 50 минут, осуществляя дополнительно непрерывное интенсивное перемешивание раствора.

Недостатком этого известного способа является высокие плотности тока, используемые в способе и длительное осуществление процесса с дополнительным интенсивным перемешиванием раствора.

Известен способ получения раствора гипохлорита магния, включающий электролиз водного раствора хлоридов магния в виде бишофита в электролизере с анодом из угольного графита и катодом из стали, на постоянном токе при плотности тока 0,1-1,5 А/дм2 и температуре электролита 20°С (см. описание изобретения к патенту РФ № 2238348, МПК С25В 1/26, 1/18, публикация 20.10.2004).

Недостатком известного способа является использование в качестве анода графита, что позволяет получать только один продукт- гипохлорит магния.

Известен способ получения гипохлоритов магния и меди, включающий электролиз водного раствора хлоридов магния, полученных растворением природного бишофита в непроточном бездиафрагменном электролизере с медными электродами, на которые подают постоянный ток напряжением 1-25 В, плотностью 1-10 A/дм2, при концентрации электролита 0,5-2% и температуре 20-25°С, процесс электролиза осуществляют в течение 0,5 часа (см. описание изобретения к патенту РФ № 2361016, MПK С25В 1/00, публикация 10.07.2009).

Недостатком этого известного способа, выбранного в качестве прототипа, является для проведения процесса использование тока постоянного направления. В результате, за счет постоянства токового режима, происходит поляризация электродов. В результате этого для получения единицы продукта (гипохлоритов магния и меди) расходуется излишнее количество электрической энергии, уменьшается выход по току получаемой продукции.

Задачей заявляемого изобретения является повышение эффективности процесса получения гипохлорита магния и меди за счет уменьшения расхода электрической энергии на получение единицы продукции в виде раствора гипохлоритов магния и меди.

Сущность заявляемого изобретения заключается в следующем. Способ электрохимического получения раствора гипохлоритов магния и меди, включающий электролиз водного раствора хлоридов магния, полученных растворением природного бишофита, в непроточном бездиафрагменном электролизере с медными электродами, на которые подают электрический ток напряжением 3-5 В (в зависимости от величины используемой плотности тока), при температуре электролита 22-25°С. Отличием является то, что на медные электроды подают импульсный ток средней плотностью 0,5-1,0 А/дм2, частотой 100-200 Гц и скважностью импульсов 2-4 при концентрации электролита 5-10% и рН 8-9, процесс электролиза осуществляется в течение 0,25-0,5 часа. Это позволяет увеличить выход по току продукта гипохлорита магния и меди при плотностях тока, значения которых равны плотностям постоянного тока.

Способ осуществляют следующим образом.

Заявляемый способ может быть реализован в электролизере с неразделенными анодным и катодным пространствами непрерывного или периодического действия с медным катодом в растворе минерала бишофита (хлорида магния) концентрацией 5-10% и pН 8-9. Электролизер подключен к источнику импульсного тока частотой 100-200 Гц, скважностью 2-4, с средней плотностью тока 0,5-1.0 А/дм2, процесс электролиза осуществляется в течение 0,25-0,5 часа.

Примеры конкретного исполнения представлены в таблицах 1, 2, 3, где показано влияние плотности, скважности на выход по току ионов меди и активного хлора.

Таблица 1
Плотность тока, А/дм2 Концентрация электролита, % Выход по току, % Удельные затраты
Гипохлорит меди Гипохлорит магния энергии, кВт·час/кг
0,510 55,345,1 5,1
0,75 10 58,147,2 6,8
1,0 10 61,048,2 7,3
0,5 5 44,327,1 7,3
0,75 5 51,029,0 7,8
1,0 5 54,730,0 8,2

Таблица 2
Плотность тока, А/дм2 Концентрация электролита, % Импульсный ток 100 Гц, выход но току(%) при скважности
Гипохлорит меди Гипохлорит магния Удельные затраты энергии, кВт·час/кг
23 42 34 23 4
0,5 10 65,065,8 66,235,0 34,235,3 4,14,3 4,6
0,75 10 67,567,6 67,732,5 32,732,3 3,84,0 4,1
1,0 10 69,469,0 68,830,6 31,031,2 5,25,1 4,9
0,5 5 52,452,3 52,247,6 47,747,8 6,86,7 6,6
0,75 5 52,052,1 52,748,0 47,947,3 7,17,4 7,6
1,0 5 55,755,0 54,844,3 45,045,2 7,37,6 7,8

Таблица 3
Плотность тока, А/дм2 Концентрация электролита, % Импульсный ток 200 Гц, выход по току(%) при скважности
Гипохлорит меди Гипохлорит магния Удельные затраты энергии, кВт·час/кг
23 42 34 23 4
0,5 10 66,166,4 67,233,9 33,632,8 4,34,6 4,9
0,75 10 67,367,1 67,432,7 32,932,6 3,74,5 4,1
1,0 10 68,267,9 67,831,8 32,132,2 4,24,6 4,9
0,5 5 53,452,5 52,146,6 47,547,9 6,86,7 6,5
0,75 5 51,051,7 52,149,0 48,347,9 7,97,1 7,3
1,0 5 53,053,4 53,447,0 46,546,6 7,47,6 7,9

Использование постоянного тока (таблица 1) позволяет при концентрации электролита 10% получать при плотности тока 0,5 А/дм2 выход по току для гипохлорита меди 55,3%, гипохлорита магния 45,1%.

Применение импульсного тока частотой 100 Гц, той же плотности при скважности 2 (таблица 2) увеличивает выход гипохлорита меди до 65.0%. В диапазоне используемых равных плотностей тока увеличение плотности импульсного тока до 1,0 А/дм2 (скважность 2) приводит к возрастанию выхода по току гипохлорита меди с 61,0 для постоянного до 69,4% (увеличение на 13,8%).

Увеличение скважности импульсного тока частотой 100 Гц от 2 до 3 при одинаковых значениях плотностей тока (таблица 2) из растворов электролита одинаковой концентрации приводит к большему выходу по току гипохлорита меди, чем при использовании постоянного тока: при плотности 0,75 А/дм2 увеличение скважности от 2 до 3 и 4 соответственно по отношению к постоянному току составляет: 2-14%, 3-16,4%, 4-16,5%.

Использование импульсного тока частотой 200 Гц (таблица 3) при равных с постоянным током плотностях и концентрации электролита 5% также приводит к большему выходу гипохлорита меди. Например: при плотности тока 0,5 А/дм2 увеличение скважности от 2 до 4 приводит к увеличению выхода продукта, по сравнению с постоянным током, на проценты: 2-20,5%, 3-18%, 4-17%.

Применение импульсного тока частотой 100 Гц скважностью 2, 3, 4 при одинаковых с постоянным током плотностях тока приводит к сокращению затрат электрической энергии на единицу массы продукта. Например, при плотности тока 0,5 А/дм2 в электролите с концентрацией 10% удельные затраты энергии составляют 5,1 кВт·час/кг, при импульсном токе 100 Гц и, соответственно, скважностях 2, 3, 4 составляют: 2-4,1 кВт·час/кг (24% выигрыша), 3-4,3 кВт·час/кг (18,6% выигрыша), 4-4,6 кВт·час/кг (4,1% выигрыша).

При использовании тока частотой 200 Гц при тех же скважностях и плотности тока 1,0 А/дм2 : 2-4,2 кВт·час/кг (73,8% выигрыша), 3-4,6 кВт·час/кг (58,7% выигрыша), 4-4,9 кВт·час/кг (48,9% выигрыша).

Приведенные примеры по влиянию плотности тока, формы, частоты и скважности импульсного тока в сравнении с постоянным током одинаковой плотности тока показывают, что выход по току продукта электролиза увеличивается.

Заявленное изобретение позволяет при замене постоянного тока импульсным током при тех же плотностях тока 0,5-1,0 А/дм2 увеличить выход по току гипохлоритов меди, снизить расход электрической энергии при электролизе раствора бишофита.

Класс C25B1/26 хлор; его соединения

способ получения йодирующего агента -  патент 2528402 (20.09.2014)
способ получения жидкого средства для очистки воды -  патент 2528381 (20.09.2014)
способ электролиза водных растворов хлористого водорода или хлорида щелочного металла в электролизере и установка для реализации данного способа -  патент 2521971 (10.07.2014)
активация катода -  патент 2518899 (10.06.2014)
электролитический способ получения ультрадисперсного порошка гексаборида диспрозия -  патент 2510630 (10.04.2014)
электрод -  патент 2487197 (10.07.2013)
способ получения диарилкарбоната и переработка, по меньшей мере, одной части образованного при этом раствора, содержащего хлорид щелочных металлов, в находящемся ниже по технологической цепочке электролизе хлорида щелочных металлов -  патент 2484082 (10.06.2013)
диафрагма электролизера -  патент 2466215 (10.11.2012)
способ совместного получения изоцианатов и хлора -  патент 2443682 (27.02.2012)
способ получения водного раствора гипохлорита натрия -  патент 2441836 (10.02.2012)
Наверх