микроизлучатель

Классы МПК:G01J5/00 Радиационная пирометрия
Автор(ы):,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования Новгородский государственный университет имени Ярослава Мудрого (RU)
Приоритеты:
подача заявки:
2011-06-24
публикация патента:

Изобретение относится к измерительной технике и может быть использовано для измерения характеристик газовых потоков. Устройство представляет собой пирометрический зонд из монокристаллического карбида кремния, состоящего из излучающей площадки круглой формы и держателя. При этом оно содержит, по крайней мере, одно сквозное отверстие в держателе. Технический результат заключается в повышении степени изотермичности излучающей поверхности, уменьшении лобового гидравлического сопротивления микроизлучателя и возможности наблюдения объектов, находящихся за микроизлучателем. 1 ил. микроизлучатель, патент № 2466361

микроизлучатель, патент № 2466361

Формула изобретения

Микроизлучатель в виде пирометрического зонда из монокристаллического карбида кремния, нагрев которого осуществляется за счет процессов теплопередачи из окружающей среды и состоящий из излучающей площадки круглой формы и держателя, отличающийся тем, что его конструкция содержит, по крайней мере, одно сквозное отверстие, расположенное в держателе.

Описание изобретения к патенту

Изобретение относится к измерительной технике и может быть использовано для измерения характеристик газовых потоков.

Известен источник инфракрасного излучения - глобар, конструкция которого представлена в виде стержня, изготовленного из поликристаллического карбида кремния диаметром 6микроизлучатель, патент № 2466361 8 мм и длиной порядка 50микроизлучатель, патент № 2466361 250 мм, нагреваемый пропускаемым через него электрическим током до температуры порядка 750÷1500 K (см. Криксунов Л.З. Справочник по основам инфракрасной техники. 1978, с.92).

Недостатком такого излучателя является сложность конструкции, обусловленная в частности использованием электрического тока для нагрева тела излучателя, необходимостью жидкостной системы охлаждения электрических контактов, а также большой коэффициент тепловой инерции из-за значительных размеров и массы конструкции.

Наиболее близким по техническому решению является принятый за прототип микроизлучатель в виде пирометрического зонда, состоящий из излучающей площадки круглой формы и держателя, нагрев которого осуществляется за счет процессов теплопередачи (конвекция + тепловая радиация) из окружающей среды (см. Карачинов В.А., Ильин С.В., Карачинов Д.В. Пирометрические зонды на основе карбида кремния // Письма в ЖТФ. - 2005. Т.31. Вып.11. - С.2-3).

Недостатками такого микроизлучателя являются сильная кондуктивная связь между излучающей площадкой и держателем и, как следствие, невысокая степень изотермичности излучающей поверхности (неравномерное температурное поле); значительное лобовое гидравлическое сопротивление излучателя поперечному потоку газа либо жидкости, которое может приводить к механическому разрушению микроизлучателя; невозможность видеонаблюдения объектов через раскаленный слой материала микроизлучателя.

Задачей предлагаемого технического решения является повышение степени изотермичности излучающей поверхности, повышение надежности и расширение функциональной возможности микроизлучателя за счет изменения его конструкции.

Для решения данной задачи предложена конструкция микроизлучателя в виде пирометрического зонда из монокристаллического карбида кремния, состоящая из излучающей площадки круглой формы и держателя и содержащая, по крайней мере, одно сквозное отверстие, расположенное на держателе. При этом нагрев микроизлучателя, как и в прототипе, осуществляется за счет процессов теплопередачи (конвекция + тепловая радиация) из окружающей среды.

На фиг.1 изображен общий вид конструкции микроизлучателя.

Устройство состоит из излучающей площадки 1, держателя 2 и отверстия 3.

Устройство работает следующим образом: одним из известных способов микроизлучатель помещают в заданную область исследуемого нагретого газового потока. За счет известных основных механизмов теплопередачи из газового потока, таких как конвекция и тепловое излучение, конструкция микроизлучателя нагревается и его поверхность излучает световой поток в окружающее пространство. Известными техническими средствами, например телевизионным пирометром, регистрируют светящееся изображение (яркостный контраст) микроизлучателя, а через сквозное отверстие в держателе - изображение исследуемых объектов.

Предлагаемое изобретение позволяет получить следующий технический результат: повышение степени изотермичности излучающей поверхности, уменьшение лобового гидравлического сопротивления микроизлучателя, возможность видеонаблюдения объектов, находящихся за микроизлучателем, за счет создания в конструкции микроизлучателя, по крайней мере, одного отверстия, расположенного на держателе. Тем самым уменьшается кондуктивная связь между излучающей площадкой и держателем за счет увеличения термического сопротивления (см. Дульнев Г.Н. Тепло- и массообмен в радиоэлектронной аппаратуре. - М.: Высшая школа,1984. с.30-31), а следовательно, выравнивается температурное поле излучающей поверхности, т.е. повышается ее степень изотермичности. Кроме того, создание отверстия повышает быстродействие микроизлучателя за счет снижения массы конструкции (см. Дульнев Г.Н. Тепло- и массообмен в радиоэлектронной аппаратуре. - М.: Высшая школа, 1984, с.51.) и значительно уменьшает лобовое гидравлическое сопротивление конструкции микроизлучателя поперечному потоку газа либо жидкости за счет уменьшения площади поверхности. Сквозное отверстие в держателе также играет роль блокиратора трещин, что повышает порог механического разрушения микроизлучателя, а следовательно, и его надежность (см. Самсонов Г.В., Винницкий И.М. Тугоплавкие соединения (справочник). - М.: Металлургия, 1976, с.287-292.).

Таким образом, предлагаемое изобретение позволяет:

- повысить степень изотермичности излучающей поверхности микроизлучателя;

- уменьшить лобовое гидравлическое сопротивление конструкции микроизлучателя;

- повысить надежность конструкции;

- расширить функциональные возможности микроизлучателя;

- повысить быстродействие микроизлучателя.

Класс G01J5/00 Радиационная пирометрия

способ и устройство для измерения температуры многожильного материала -  патент 2529778 (27.09.2014)
внутренний маскировочный механизм для блока датчика движения -  патент 2524749 (10.08.2014)
способ и система коррекции на основе квантовой теории для повышения точности радиационного термометра -  патент 2523775 (20.07.2014)
способ измерения профиля температуры в конструкционных материалах -  патент 2521217 (27.06.2014)
способ и устройство для измерения степени черноты -  патент 2521131 (27.06.2014)
устройство и способ для детектирования инфракрасного излучения с помощью матрицы резистивных болометров -  патент 2518348 (10.06.2014)
тепловой приемник -  патент 2518250 (10.06.2014)
приемник ик-излучения болометрического типа -  патент 2515417 (10.05.2014)
пирометрический способ измерения распределения температуры на поверхности объекта -  патент 2515086 (10.05.2014)
наноструктурный ик-приемник (болометр) с большой поверхностью поглощения -  патент 2511275 (10.04.2014)
Наверх