способ прокладки подземного трубопровода

Классы МПК:F16L1/028 в грунте
F16L1/06 вспомогательное оборудование для них, например анкеры
Автор(ы):, , ,
Патентообладатель(и):Общество с ограниченной ответственностью "Газпром трансгаз Ухта" (RU)
Приоритеты:
подача заявки:
2011-05-16
публикация патента:

Изобретение относится к строительству трубопроводов на обводненных и болотистых участках трассы. Способ включает раскопку траншеи, укладку в траншею трубопровода, перекрытие его, дна, боковых поверхностей и берм траншеи гибкими коврами с образованием боковых карманов, засыпку их и верха трубопровода грунтом, перекрытие грунта продольными участками ковров и окончательную засыпку траншеи с образованием наружного валика. Один из двух боковых карманов каждого ковра выполняют с провисанием над дном траншеи. У смежных развернутых ковров карманы с провисанием располагают в шахматном порядке относительно оси трубопровода. При этом каждый ковер со стороны провисающего кармана сначала фиксируют от сдвига на берме траншеи грунтовой насыпью, затем засыпают противоположный карман до верха трубопровода, препятствуя сдвигу ковра по его поверхности частичной засыпкой провисающего кармана, а затем продолжают его засыпку и засыпку траншеи в целом. Расчетную длину участка ковра, образующего провисающий карман, определяют в зависимости от модуля упругости и прочности при растяжении материала ковра, в качестве которого используется геотекстильное полотно. Технический результат: надежное закрепление трубопровода в условиях обводненного грунта без дополнительных затрат труда и материалов. 1 з.п. ф-лы, 4 ил. способ прокладки подземного трубопровода, патент № 2467240

способ прокладки подземного трубопровода, патент № 2467240 способ прокладки подземного трубопровода, патент № 2467240 способ прокладки подземного трубопровода, патент № 2467240 способ прокладки подземного трубопровода, патент № 2467240

Формула изобретения

1. Способ прокладки подземного трубопровода, заключающийся в раскопке траншеи, укладке в траншею трубопровода, перекрытии его, дна, боковых поверхностей и берм траншеи гибкими коврами с образованием боковых карманов, засыпке их и верха трубопровода грунтом, перекрытии грунта продольными участками ковров, и окончательной засыпке траншеи с образованием наружного валика, отличающийся тем, что один из двух боковых карманов каждого ковра выполняют с провисанием над дном траншеи, а у смежных развернутых ковров карманы с провисанием располагают в шахматном порядке относительно оси трубопровода, при этом каждый ковер со стороны провисающего кармана сначала фиксируют от сдвига на берме траншеи грунтовой насыпью, затем засыпают противоположный карман до верха трубопровода, препятствуя сдвигу ковра по его поверхности частичной засыпкой провисающего кармана, а затем продолжая его засыпку и засыпку траншеи в целом, при этом расчетную длину участка ковра, образующего провисающий карман, определяют в зависимости от модуля упругости и прочности при растяжении материала ковра.

2. Способ по п.1, отличающийся тем, что в качестве материала гибкого ковра используют геотекстильное полотно.

Описание изобретения к патенту

Изобретение относится к строительству и может быть использовано при прокладке подземного трубопровода на обводненных и болотистых участках трассы.

Известен способ прокладки подземного трубопровода, включающий отрывку траншеи, укладку трубопровода, перекрытие его стенок и берм траншеи гибким полотнищем с образованием по обе стороны от трубопровода протяженных «карманов», обратную засыпку траншеи с созданием насыпного валика, при этом под «карманами» предварительно выполняют подсыпку грунта на высоту до середины уложенного трубопровода (см. авт. свид. СССР № 1404737, МПК6 F16L 1/028, опубл. 23.06.1988).

Недостаток данного способа состоит в том, что не рационально используется балластирующая способность грунта, засыпаемого в карманы. В начальный период всплытия трубопровода, когда балластирующая нагрузка грунта, расположенного над трубопроводом, недостаточна для удержания его на дне траншеи в проектном положении, засыпка, расположенная в карманах, не сразу создает необходимое сопротивление подъему трубопровода, так как гибкие ковры обладают высокой эластичностью при растяжении, и только при значительном всплытии трубопровода проявляется балластирующий эффект грунта в карманах. Однако трубопровод к этому моменту уже теряет свое устойчивое положение, при этом возрастает эффект воздействия сжимающей нагрузки на искривленный участок трубопровода, ускоряющий его всплытие. Кроме того, грунт, засыпанный под карманы, вообще не создает балластирующей нагрузки.

Прототипом к заявляемому способу является способ прокладки подземного трубопровода, включающий отрывку траншеи, укладку трубопровода, навеску на него «карманов» путем перекрытия берм, стенок и дна траншеи гибким прокладочным материалом, совмещенную засыпку «карманов» и траншеи балластирующим материалом (см. авт. свид. СССР № 1041789, МПК6 F16L 1/028, опубл. 15.09.1983).

Недостатки способа по прототипу связаны, как и в предыдущем способе, с запоздалым подключением грунта в «карманах» в качестве балласта. Кроме того, отсутствие операции перекрытия балласта продольными участками прокладочного материала снижает надежность балластировки.

Кроме недостатков, описанных выше, указанные способы имеют еще один существенный недостаток, а именно пониженный уровень продольного защемления протяженного трубопровода в грунте. Строительство трубопроводов на болотистых и обводненных территориях ведется в зимний сезон при низкой температуре воздуха, достигающей минус 40°С. После прокладки и засыпки трубопровода по мере повышения его температуры возрастает продольная сжимающая сила, вызывающая повышенные продольно-поперечные перемещения трубопровода, причем величина этих перемещений впрямую зависит от степени защемления трубопровода в грунте или, что то же самое, от сопротивления грунта этим перемещениям.

Недостаточное сопротивление грунта засыпки может существенно снизить уровень критического сжимающего усилия, например ниже уровня действующего эквивалентного усилия в трубопроводе, и тогда при оттаивании всего объема грунта участок трубопровода может потерять устойчивость до начала эксплуатации или в ее процессе.

Задачей изобретения является создание способа прокладки подземного трубопровода, обеспечивающего более высокий уровень его устойчивости путем увеличения сопротивления среды, окружающей трубопровод.

Техническим результатом при осуществлении способа, сущность которого основана на заявленном изобретении, является надежное закрепление трубопровода в условиях обводненного грунта без дополнительных затрат труда и материалов.

Поставленная задача в способе прокладки подземного трубопровода, заключающегося в раскопке траншеи, укладке в траншею трубопровода, перекрытии его, дна, боковых поверхностей и берм траншеи гибкими коврами с образованием боковых карманов, засыпке их и верха трубопровода грунтом, перекрытии грунта продольными участками ковров и окончательной засыпке траншеи с образованием наружного валика, решается тем, что один из двух боковых карманов каждого ковра выполняют с провисанием над дном траншеи, а у смежных развернутых ковров карманы с провисанием располагают в шахматном порядке относительно оси трубопровода, при этом каждый ковер со стороны провисающего кармана сначала фиксируют от сдвига на берме траншеи грунтовой насыпью, затем засыпают противоположный карман до верха трубопровода, препятствуя сдвигу ковра по его поверхности частичной засыпкой провисающего кармана, а затем продолжая его засыпку и засыпку траншеи в целом. При этом расчетную длину участка ковра, образующего провисающий карман, определяют в зависимости от модуля упругости и прочности при растяжении материала ковра. В качестве гибкого коврового материала используют геотекстильное полотно.

Способ поясняется с помощью фиг.1-4. На фиг.1 представлен вид сверху на траншею с трубопроводом, развернутыми коврами, зафиксированными грунтовой насыпью на берме траншеи со стороны кармана с провисающим гибким ковром, до засыпки траншеи. На фиг.2 изображено поперечное сечение траншеи с трубопроводом и развернутым и частично засыпанным ковром. На фиг.3 - то же после окончательной засыпки трубопровода. На фиг.4 представлена расчетная схема определения усилий воздействия засыпки на трубопровод.

Заявленный способ реализуют следующим образом.

На дно подготовленной траншеи 1 укладывают трубопровод 2, перекрывают его, бермы 3, боковые стенки 4 и дно 5 (донные участки) траншей гибким ковром 6 с образованием боковых карманов 7, 8, причем с одной стороны трубопровода гибкий ковер 6 в кармане 7 прилегает к дну 5 траншеи, а с другой стороны трубопровода 2 гибкий ковер 6 в боковом кармане 8 расчетной длины провисает над дном 5 траншеи. Каждый последующий гибкий ковер 9, 10 укладывают аналогично, но с обратным расположением боковых карманов 7, 8 относительно трубопровода 2. Участки гибких ковров 6, 9, 10, расположенные на бермах траншей, фиксируют от сдвига грунтовыми насыпями 11 со стороны расположения карманов 8 с провисанием гибких ковров 6, 9, 10. Засыпают грунтом 12 из отвала (не показан) боковые карманы 7, одновременно компенсируя сдвиг ковра 6 частичной засыпкой 13 провисающего кармана 8, затем продолжают засыпку провисающих боковых карманов 8 и траншеи в целом до расчетного количества грунта 12, используя также грунт насыпей 11. После этого перекрывают засыпку (грунт 12) продольными участками 14 ковров и производят окончательную засыпку грунта из отвала с образованием наружного валика 15. Длину провисающего участка ковра 6 определяют исходя из модуля упругости и прочности при растяжении материала ковра после засыпки траншеи.

Преимущество изобретения по сравнению с прототипом проявляется в следующем. В процессе засыпки карманов с провисающими гибкими коврами падающий грунт натягивает ковры расчетными усилиями до момента прилегания ковров к дну траншеи. Усилия натяжения, воздействующие на трубопровод, прижимают его к дну траншеи совместно с весовой нагрузкой грунта, расположенного над трубопроводом в проекции на его диаметр. Кроме того, часть усилия натяжения, направленная горизонтально на боковую поверхность трубопровода, увеличивает защемление его грунтом, причем эти усилия воздействуют в шахматном порядке на трубопровод, не давая ему сдвинуться в горизонтальной плоскости к одной из стенок траншеи. Таким образом, за счет активного воздействия грунта на боковые карманы провисающих ковров реализуются дополнительные усилия прижатия трубопровода к дну траншеи и дополнительное защемление трубопровода в продольном направлении, что, в конечном счете, увеличивает устойчивость положения трубопровода, предотвращая его искривление и всплытие при воздействии архимедовой силы и продольного сжимающего усилия.

Пример.

Определить эффект изобретения по вертикальной балластирующей нагрузке и усилию защемления трубопровода диаметром 1420 мм в продольном направлении в условиях полного обводнения траншеи.

Материал ковра - геотекстильный материал (ГТМ) КМ-1 марки 450 производства ООО «Веротекс», г.Москва (СТО Газпром 2-2.2-076-2006 Методические указания по применению геотекстильных материалов с учетом их функционального назначения при проектировании и строительстве газопроводов. - Введ. 02.10.2006. - М.: ОАО «Газпром», ООО «ВНИИГАЗ», ООО «ИРЦ Газпром», 2006. - 32 с.). Балластирующий материал - грунт, вынутый из траншеи, представляющий собой песок средней крупности.

Исходные данные: разрывная нагрузка полотна qрн=19,6 кН/м; удлинение при разрыве способ прокладки подземного трубопровода, патент № 2467240 рн=90%, удлинение при нагрузке, составляющей 25% от разрывной, способ прокладки подземного трубопровода, патент № 2467240 доп=32%, толщина полотна способ прокладки подземного трубопровода, патент № 2467240 пол=4,5 мм; удельный вес песка во взвешенном состоянии (в воде) способ прокладки подземного трубопровода, патент № 2467240 взв=6 кН/м3; размеры траншеи прямоугольного сечения: глубина Н=2,42 м, ширина В=2,82 м.

Силы трения полотна по трубопроводу и боковым стенкам траншеи при засыпке грунта не учитывают в силу того, что трение компенсируется динамической нагрузкой падающего грунта засыпки, а расчет ведется для условий статических весовых нагрузок. Начальную длину провисающего участка ковра l0=laced определяют расчетом исходя из того, чтобы после засыпки данного бокового кармана растянутый участок ковра конечной длиной lk занял положение aa1b1ed:

способ прокладки подземного трубопровода, патент № 2467240

где [способ прокладки подземного трубопровода, патент № 2467240 ] - допускаемые напряжения в ковре; Епол - модуль упругости материала ковра (полотна ГТМ).

Отношение ([способ прокладки подземного трубопровода, патент № 2467240 ]/Епол) равно допустимой деформации способ прокладки подземного трубопровода, патент № 2467240 доп ковра. Участок полотна l0=l aced принят закрепленным в точках a, d. До засыпки левого кармана полотно в нем свободно провисает до нижней точки с, касаясь боковой стенки траншеи и облегая поверхность трубы на четверти ее окружности (участок ed). Правый карман засыпан грунтом, который неподвижно защемляет полотно от точки d и далее вправо-вниз. При засыпке левого кармана блоком грунта массой mк (условно для простоты принятым прямоугольного сечения abb 1a1) сила веса блока Gк растягивает полотно ГТМ на величину допустимой деформации способ прокладки подземного трубопровода, патент № 2467240 доп=32% из положения aced в положение aa 1b1ed. Подставляя значения способ прокладки подземного трубопровода, патент № 2467240 доп=0,32 и lk=Н+a1b 1+0,25способ прокладки подземного трубопровода, патент № 2467240 Dн при следующих исходных данных: Н=2,42 м, a1b1=0,7 м, Dн=1,42 м в формулу (1), получаем l0=4,24/1,32=3,21 м.

После засыпки на участке ed поверхности трубы возникает распределенное усилие q, вызванное растягивающими усилиями N, равнодействующей которых является сила Q, направленная под углом 45° к вертикальной оси траншеи. Вертикальная составляющая силы Q, равная силе N, дополняет балластирующую нагрузку блока грунта debb1 e1, расположенного на трубопроводе, а горизонтальная составляющая, также равная силе N, дополняет нагрузку защемления трубопровода в продольном направлении.

Расчеты усилий выполняем для единичной длины трубопровода L0 =1 м.

Определяем модуль упругости Епол полотна ГТМ по формуле:

способ прокладки подземного трубопровода, патент № 2467240

Усилие, необходимое для растяжения полотна на величину способ прокладки подземного трубопровода, патент № 2467240 доп=0,32 (32%), определяют по формуле:

способ прокладки подземного трубопровода, патент № 2467240

где Fпол=2способ прокладки подземного трубопровода, патент № 2467240 пол-L0 - площадь поперечного сечения полотна, растягиваемого силой N.

Подставляя (3) в (2), получаем:

способ прокладки подземного трубопровода, патент № 2467240

При заданных qрн=19,6 кН/м, L0=1 м получим N=9,8 кН.

Для того чтобы полотно заняло контур траншеи по линии aa1b1 ed, должно быть выполнено условие:

способ прокладки подземного трубопровода, патент № 2467240

где Gk=способ прокладки подземного трубопровода, патент № 2467240 взв·Н·rн·L0 - вес грунта, Н; rн - ширина бокового кармана (радиус трубы).

Подставляя данные в (5), получим G к=6·2,82·0,7·1=11,8 кН. Таким образом, условие (5) выполняется, поэтому часть веса Gк используется для натяжения полотна (9,8 кН), а оставшаяся часть (11,8-9,8=2 кН) уравновешивается реакцией дна траншеи (на фиг.4 не показана).

Определим балластирующую нагрузку qГТМ (удерживающую способность) грунта с ГТМ по общепринятой методике (ВСН 39-1.9-003-98. Конструкции и способы балластировки и закрепления подземных газопроводов. Введ. 01.01.99. - ИРЦ Газпром. - М.: 1998. - 52 с.) и данному изобретению. В соответствии с указанной методикой величина q1 определяется с учетом с гр=0 для песка и hв=0 для полного обводнения по формуле:

способ прокладки подземного трубопровода, патент № 2467240

где nгр - коэффициент надежности по грунту, равный 1,2; способ прокладки подземного трубопровода, патент № 2467240 п - коэффициент надежности по назначению, равный 1,2; способ прокладки подземного трубопровода, патент № 2467240 гр - угол внутреннего трения грунта, равный 25°.

Подставляя данные в (6), получим q 1ГТМ=15,3 кН/м.

Из формулы (6) видно, что в расчет не принимается масса грунта, приходящаяся на карманы ковров.

Если использовать для балластировки заявляемый способ, то следует учесть вертикальную проекцию силы Q, равную N, тогда формула для балластирующей нагрузки q2ГТМ будет иметь вид:

способ прокладки подземного трубопровода, патент № 2467240

Подставляя в (7) q1ГТМ=15,3 кН, N=9,8 кН, получим q2ГТМ=25,1 кН.

Таким образом, балластирующий эффект возрос в 25,1/15,3=1,64 раза или на 64%.

Теперь рассмотрим защемляющий эффект грунта при использовании данного способа прокладки.

Величину предельного сопротивления грунта сдвигу tпр1 в продольном направлении определяем по формуле из справочника (Айнбиндер А.Б., Камерштейн А.Г. Расчет магистральных трубопроводов на прочность и устойчивость. / Справочное пособие. - М.: Недра, 1982. - 344 с.) без учета сил сцепления (сгр =0) для песка:

способ прокладки подземного трубопровода, патент № 2467240

где qтр - вес трубопровода; способ прокладки подземного трубопровода, патент № 2467240 гр=способ прокладки подземного трубопровода, патент № 2467240 взв - удельный вес грунта во взвешенном состоянии; сh=0,4 - безразмерный коэффициент.

Значение qтр=5900 Н/м для трубы сечением 1420×17,0 мм.

Подставляя данные в (8), получим tпр1 =16,9 кН/м.

При использовании изобретения к полученной нагрузке добавится горизонтальная проекция силы Q, равная N, т.е.

способ прокладки подземного трубопровода, патент № 2467240

Подставляя данные в (9), получим t пр2=26,7 Н/м.

Таким образом, значение сопротивления продольному перемещению увеличится в 1,58 раза или на 58%.

В результате использования данного изобретения при прокладке подземного трубопровода с использованием в качестве балластирующего средства геотекстильного материала резко возрастают эффективность балластировки и устойчивость газопровода, проложенного в обводненном грунте.

Класс F16L1/028 в грунте

способ бестраншейной замены подземных трубопроводов -  патент 2528465 (20.09.2014)
способ подземной бестраншейной прокладки трубопроводов -  патент 2526474 (20.08.2014)
переход газонефтепровода и способ его сборки, хомут-стяжка, опорно-направляющее кольцо для перехода и устройство для сборки кольца. -  патент 2526137 (20.08.2014)
способ прокладки подземного трубопровода -  патент 2521521 (27.06.2014)
ремонтный котлован вдоль магистрального трубопровода и способ разработки ремонтного котлована вдоль магистрального трубопровода -  патент 2520760 (27.06.2014)
способ прокладки трубопровода в скальных и полускальных грунтах на продольном уклоне -  патент 2516984 (27.05.2014)
способ бестраншейной прокладки труб в грунте -  патент 2516630 (20.05.2014)
способ укладки трубопроводов в необслуживаемом технологическом тоннеле в несколько ярусов -  патент 2511872 (10.04.2014)
способ прокладки подземного трубопровода при пересечении активной сейсмотектонической зоны -  патент 2509249 (10.03.2014)
способ ремонта участка трубопровода, деформированного изгибом -  патент 2505731 (27.01.2014)

Класс F16L1/06 вспомогательное оборудование для них, например анкеры

Наверх