камера жидкостного ракетного двигателя или газогенератора с лазерным устройством воспламенения компонентов топлива и способ ее запуска

Классы МПК:F02K9/95 отличающиеся способами и устройствами для пуска и зажигания
Автор(ы):, ,
Патентообладатель(и):Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский центр имени М.В. Келдыша" (RU)
Приоритеты:
подача заявки:
2011-11-03
публикация патента:

Изобретений относится к ракетно-космической технике и может быть использована для камер жидкостных ракетных двигателей и газогенераторов многократного запуска, использующих как жидкие, так и газообразные ракетные топлива. Камера жидкостного ракетного двигателя или газогенератора с лазерным устройством воспламенения компонентов содержит камеру сгорания с соплом, смесительную головку с каналами подвода компонентов и лазерное устройство воспламенения компонентов топлива, состоящее из малогабаритного источника лазерного излучения с узлом ввода и фокусировки. При этом узел ввода и фокусировки излучения выполнен таким образом, что он обеспечивает фокусировку лазерного излучения на элемент внутренней поверхности камеры сгорания жидкостного ракетного двигателя или газогенератора или в ее объем. Узел может быть герметично установлен непосредственно на смесительную головку или на боковую поверхность камеры сгорания. Кроме того, устройство снабжено дополнительно, по крайней мере, одним малогабаритным источником лазерного излучения с узлом ввода и фокусировки, а также мишенью, устанавливаемой в камере сгорания в области фокусировки лазерного излучения. Способ запуска камеры жидкостного ракетного двигателя или газогенератора с лазерным устройством воспламенения компонентов топлива основан на подаче компонентов топлива и воспламенении топливной смеси путем подачи лазерного излучения и его фокусировки в область оптического пробоя, при этом весь расход окислителя и горючего подают непосредственно в зону горения, где осуществляют их воспламенение при соотношении компонентов, достаточном для воспламенения топливной смеси. Изобретение обеспечивает повышение надежности многократного воспламенения топлива в камере жидкостного ракетного двигателя или газогенератора, снижение массогабаритных характеристик системы зажигания, снижение массогабаритных характеристик жидкостного ракетного двигателя или газогенератора. 2 н. и 7 з.п. ф-лы, 1 ил. камера жидкостного ракетного двигателя или газогенератора с лазерным   устройством воспламенения компонентов топлива и способ ее запуска, патент № 2468240

камера жидкостного ракетного двигателя или газогенератора с лазерным   устройством воспламенения компонентов топлива и способ ее запуска, патент № 2468240

Формула изобретения

1. Камера жидкостного ракетного двигателя или газогенератора с лазерным устройством воспламенения компонентов топлива, содержащая камеру сгорания с соплом, смесительную головку с каналами подвода компонентов, лазерное устройство воспламенения компонентов топлива, состоящее из малогабаритного источника лазерного излучения с узлом ввода и фокусировки, отличающаяся тем, что узел ввода и фокусировки излучения выполнен таким образом, что он обеспечивает фокусировку лазерного излучения на элемент внутренней поверхности камеры жидкостного ракетного двигателя или газогенератора или в ее объем.

2. Камера жидкостного ракетного двигателя или газогенератора с лазерным устройством воспламенения компонентов топлива по п.1, отличающаяся тем, что узел ввода и фокусировки лазерного излучения герметично установлен непосредственно на смесительную головку.

3. Камера жидкостного ракетного двигателя или газогенератора с лазерным устройством воспламенения компонентов топлива по п.1, отличающаяся тем, что узел ввода и фокусировки лазерного излучения герметично установлен на боковую поверхность камеры сгорания.

4. Камера жидкостного ракетного двигателя или газогенератора с лазерным устройством воспламенения компонентов топлива по п.2 или 3, отличающаяся тем, что устройство снабжено, по крайней мере, одним малогабаритным источником лазерного излучения с узлом ввода и фокусировки.

5. Камера жидкостного ракетного двигателя или газогенератора с лазерным устройством воспламенения компонентов топлива по п.2 или 3, отличающаяся тем, что в камере сгорания в области фокусировки лазерного излучения установлена мишень.

6. Камера жидкостного ракетного двигателя или газогенератора с лазерным устройством воспламенения компонентов топлива по п.4, отличающаяся тем, что в камере сгорания, по крайней мере, для одного малогабаритного источника лазерного излучения в области фокусировки лазерного излучения установлена мишень.

7. Способ запуска камеры жидкостного ракетного двигателя или газогенератора с лазерным устройством воспламенения компонентов топлива, основанный на подаче компонентов топлива и воспламенении топливной смеси путем подачи лазерного излучения и его фокусировки в область оптического пробоя, отличающийся тем, что весь расход окислителя и горючего подают непосредственно в зону горения, где осуществляют их воспламенение при соотношении компонентов, достаточном для воспламенения топливной смеси.

8. Способ запуска камеры жидкостного ракетного двигателя или газогенератора с лазерным устройством воспламенения компонентов топлива по п.7, отличающийся тем, что подачу лазерного излучения осуществляют с началом подачи второго компонента топлива.

9. Способ запуска камеры жидкостного ракетного двигателя или газогенератора с лазерным устройством воспламенения компонентов топлива по п.7, отличающийся тем, что подачу лазерного излучения осуществляют в виде серии импульсов.

Описание изобретения к патенту

Группа изобретений относится к ракетно-космической технике и может быть использована для камер жидкостных ракетных двигателей (ЖРД) и газогенераторов многократного запуска, использующих как жидкие, так и газообразные ракетные топлива в условиях их эксплуатации на ракетах, космических аппаратах и орбитальных пилотируемых космических станциях, а также при отработке двигателей и газогенераторов в стендовых условиях. Группа изобретений может быть использована также в авиационной технике и в агрегатах промышленной энергетики.

Известна конструкция ЖРД, работающего на несамовоспламеняющемся топливе, приведенная в [1]. Устройство включает основную камеру сгорания, предкамеру и раздельные линии подачи компонентов топлива в камеру сгорания и в предкамеру. Для воспламенения топлива в предкамере установлена электроискровая свеча.

Способ запуска ЖРД, реализованный в данном устройстве, состоит в следующем. Пусковые порции окислителя и горючего поступают в предкамеру ЖРД. После смешения компонентов до заданного состава, который определяется допустимой температурой в предкамере, смесь воспламеняется от включенной электроискровой свечи. Образующаяся струя продуктов сгорания воспламеняет основной расход топлива, поступающий в камеру сгорания.

Недостатками такого устройства и способа запуска являются:

- обязательное наличие предкамеры, в которой находится устройство воспламенения смеси, что усложняет конструкцию, увеличивает массу и габариты двигателя;

- наличие двух магистралей подачи в двигатель каждого из компонентов топлива;

- использование в качестве источника воспламенения электроискровой свечи, снижающей надежность работы двигателя при многократных включениях, так как в этом случае с попаданием на свечу относительно крупных капель жидких компонентов топлива свеча загрязняется продуктами неполного сгорания топлива в предкамере;

- необходимость подачи отдельной части компонентов в предкамеру с низкой полнотой сгорания топлива (для обеспечения допустимого уровня температур в предкамере), что приводит к снижению полноты сгорания топлива за импульс.

Известна конструкция ракетного двигателя малой тяги (РДМТ) [2], работающего на несамовоспламеняющихся газообразном окислителе и жидком горючем, содержащем камеру сгорания с соплом, смесительную головку с каналами подвода компонентов и тангенциальными каналами для подачи топливной смеси в камеру сгорания с полостью закрутки и устройство воспламенения топливной смеси. Устройством воспламенения топливной смеси служит источник лазерного излучения с узлом ввода и фокусировки, герметично установленным непосредственно на смесительную головку, при этом лазерный луч направлен в осевой канал - зону первоначального воспламенения компонентов в точку фокусировки на поверхности осевого канала, либо в объеме топливной смеси.

Способ запуска такого РДМТ основан на подаче в смесительную головку двигателя горючего и окислителя, при этом весь расход горючего и окислителя подают в зону смешения компонентов с образованием там топливной смеси оптимального для работы двигателя состава. Образовавшуюся топливную смесь закручивают (за счет тангенциального расположения каналов) и подают одновременно в зону основного горения и в зону первоначального воспламенения компонентов топлива - в осевой канал, где полученную смесь воспламеняют путем фокусировки лазерного излучения в область оптического пробоя на поверхности камеры сгорания осевого канала, либо в объеме топливной смеси. Образовавшийся факел продуктов сгорания поджигает топливную смесь в области основного горения.

Недостатком такого устройства и способа запуска РДМТ является то, что устройство предполагает обязательное наличие в смесительной головке тангенциальных каналов, в которых происходит смешение и закрутка топливных компонентов для подготовки топливной смеси к последующему воспламенению, что усложняет конструкцию, а также увеличивает массу и габариты двигателя. К недостаткам способа следует отнести возможность работы только на топливной паре - газообразный окислитель и жидкое горючее.

Технической задачей, на решение которой направлена группа изобретений, является обеспечение надежного многократного воспламенения топлива в камере ЖРД или газогенератора, снижение массогабаритных характеристик системы зажигания, снижение массогабаритных характеристик ЖРД или газогенератора, упрощение процедуры поджига камеры, а также возможность работы ЖРД или газогенератора как на жидких, так и на газообразных несамовоспламеняющихся компонентах топлива.

Для решения поставленной задачи предлагаются устройство - камера жидкостного ракетного двигателя или газогенератора с лазерным устройством воспламенения компонентов топлива и способ ее запуска.

Камера жидкостного ракетного двигателя или газогенератора с лазерным устройством воспламенения компонентов топлива содержит камеру сгорания с соплом, смесительную головку с каналами подвода компонентов, лазерное устройство воспламенения компонентов топлива, состоящее из малогабаритного источника лазерного излучения с узлом ввода и фокусировки. При этом узел ввода и фокусировки излучения выполнен таким образом, что он обеспечивает фокусировку лазерного излучения на элемент внутренней поверхности камеры сгорания жидкостного ракетного двигателя или газогенератора или в ее объем.

По-разному может быть установлен узел ввода и фокусировки излучения малогабаритного источника лазерного излучения:

1) узел ввода и фокусировки лазерного излучения герметично установлен непосредственно на смесительную головку;

2) узел ввода и фокусировки лазерного излучения герметично установлен на боковую поверхность камеры сгорания.

В обоих вариантах установки узла ввода и фокусировки излучения малогабаритного источника лазерного излучения заявляемое устройство может быть снабжено дополнительно, по крайней мере, одним малогабаритным источником лазерного излучения с узлом ввода и фокусировки.

В обоих вариантах установки узла ввода и фокусировки излучения малогабаритного источника лазерного излучения, а также при использовании, по крайней мере, одного дополнительного малогабаритного источника лазерного излучения с узлом ввода и фокусировки, в камере сгорания заявляемого устройства может быть установлена мишень в области фокусировки лазерного излучения, по крайней мере, для одного малогабаритного источника лазерного излучения, что позволяет снизить требования к энергетическим параметрам излучения малогабаритного источника лазерного излучения.

Для запуска камеры жидкостного ракетного двигателя или газогенератора с лазерным устройством воспламенения компонентов топлива предлагается способ, основанный на подаче компонентов топлива и воспламенении топливной смеси путем подачи лазерного излучения и его фокусировки в область оптического пробоя, при этом весь расход окислителя и горючего подают непосредственно в зону горения, где осуществляют их воспламенение при соотношении компонентов, достаточном для воспламенения топливной смеси.

В заявленном способе впервые воспламенение осуществляют путем подачи лазерной энергии и ее фокусировки непосредственно в камеру ЖРД или газогенератора в виде серии отдельных импульсов с интенсивностью, достаточной для возникновения оптического пробоя в зоне фокусировки, при этом зона фокусировки выбирается из условий присутствия в ней компонентов топлива в концентрационных пределах, достаточных для воспламенения, а количество импульсов и их частота следования выбираются из условия обеспечения воспламенения топлива сразу после его подачи в камеру сгорания на режиме запуска двигателя.

Как правило, при запуске ракетного двигателя один из компонентов подается с опережением. Поэтому, для снижения энергопотребления системы зажигания, включение лазера целесообразно осуществлять после подачи второго компонента, так как только начиная с этого момента в области фокусировки может появиться смесь компонентов, способная к воспламенению. В переходный момент с начала подачи второго компонента в области фокусировки соотношение компонентов может изменяться. Поэтому для надежности воспламенения подачу поджигающего импульса необходимо осуществлять многократно. Количество импульсов и частота их следования подбирается экспериментально. Так, для РД достаточно больших тяг (тонна и более), длительность серии лазерных импульсов должна составлять 1-3 сек при частоте следования импульсов 10-20 Гц. Для двигателей меньших тяг, особенно РДМТ, длительность серии может составлять доли секунды при частоте следования импульсов до 100 Гц. При устойчивой и стационарной во времени схеме смесеобразования в области фокусировки, воспламенение в РДМТ можно осуществлять единичным импульсом включения лазера, а не серией.

Величина плотности мощности сфокусированного лазерного излучения должна быть достаточной, чтобы в смеси компонентов произошел оптический пробой с получением лазерной искры. Порог пробоя зависит от различных параметров: состава смеси, давления, длины волны излучения и ряда других факторов. При этом величина лазерной энергии должна быть достаточной для устойчивого развития горения, что зависит как от выделяющейся при реакции горения энергии, так и от присутствующих механизмов потерь энергии из высокотемпературной зоны. В частности, для организации оптического пробоя в газе при длительности импульса 10-8 с, характерной для твердотельных импульсных лазеров с модуляцией добротности с активной средой из Nd:YAG (гранат с неодимом), требуется выходная энергия лазерных импульсов порядка ~20-100 мДж.

В предлагаемых вариантах устройства для осуществления заявляемого способа впервые используется малогабаритный лазер с узлом ввода и фокусировки излучения, стыкуемый непосредственно к камере сгорания и обеспечивающий интенсивность лазерного излучения в области фокусировки в диапазоне 109-1011 Вт/см. Для крупноразмерных камер сгорания с целью обеспечения равномерности зажигания компонентов по объему, возможно использование не одного, а сразу нескольких лазеров. Для снижения требуемой интенсивности излучения лазера, его излучение можно сфокусировать на поверхность специальной мишени или непосредственно на элемент конструкции камеры жидкостного ракетного двигателя или газогенератора. В результате снижается порог оптического пробоя, и смесь взаимодействует с плазменным факелом, инициированным сфокусированным на поверхность лазерным лучом. Для образования плазмы этим способом требование к пороговому значению плотности мощности сфокусированного лазерного излучения более чем на порядок меньше, чем для организации оптического пробоя в газе. Так, для поджига горючих смесей в области оптимальных концентраций достаточно, чтобы выходная энергия лазерных импульсов составляла ~1 мДж при длительности импульса ~10-8 с.

Устройство с узлом ввода и фокусировки излучения малогабаритного источника лазерного излучения, установленным и настроенным таким образом, что лазерный луч направлен и сфокусирован в объем рабочей смеси камеры сгорания, целесообразно использовать при достаточно мощных лазерных импульсах с энергией импульсов ~20камера жидкостного ракетного двигателя или газогенератора с лазерным   устройством воспламенения компонентов топлива и способ ее запуска, патент № 2468240 100 мДж. При таких импульсах возможно осуществить оптический пробой в объеме среды в области фокусировки излучения.

Устройство с узлом ввода и фокусировки излучения малогабаритного источника лазерного излучения, установленным и настроенным таким образом, что лазерный луч направлен и сфокусирован на мишень, установленную в камере жидкостного ракетного двигателя или газогенератора либо на элемент внутренней поверхности камеры жидкостного ракетного двигателя или газогенератора, целесообразно использовать для снижения энергии воспламеняющих импульсов, упрощения узла ввода и фокусировки излучения за счет снижения требований к системе фокусировки, снижения массогабаритных характеристик лазерного источника. При этом воспламенение смеси происходит вначале вблизи поверхности мишени либо элемента внутренней поверхности камеры жидкостного ракетного двигателя или газогенератора, а затем распространяется вниз по течению.

Использование предложенного способа запуска камеры жидкостного ракетного двигателя или газогенератора с лазерным устройством воспламенения компонентов топлива позволяет решить поставленную задачу с получением требуемого технического результата, а именно:

- обеспечение надежного многократного воспламенения топлива в камере ЖРД или газогенератора;

- снижение массогабаритных характеристик системы зажигания;

- снижение массогабаритных характеристик ЖРД или газогенератора за счет устранения необходимости использования предкамеры либо специальной смесительной головки, содержащей тангенциальные каналы, в которых происходит смешение и закрутка топливных компонентов для подготовки топливной смеси к последующему воспламенению;

- упрощение процедуры поджига камеры;

- возможность работы ЖРД или газогенератора как на жидких, так и на газообразных несамовоспламеняющихся компонентах топлива.

Предлагаемая камера жидкостного ракетного двигателя или газогенератора с лазерным устройством воспламенения компонентов топлива и способ ее запуска иллюстрируются следующим графическим материалом.

На фигуре представлен вариант устройства, в котором узел ввода и фокусировки лазерного излучения герметично установлен непосредственно на смесительную головку, а в камере сгорания в области фокусировки лазерного излучения установлена мишень.

Устройство состоит из камеры сгорания 1 с соплом 2, смесительной головки 3, по крайней мере, с одной форсункой 4, источника лазерного излучения 5 с узлом ввода и фокусировки излучения 6. Оптический пробой 7 происходит при фокусировке лазерного излучения 8 на специальной мишени 9.

Рассмотрим работу представленного на фигуре устройства. В камеру сгорания 1 через смесительную головку 3 с форсунками 4 подается окислитель и горючее. Так как один из компонентов обычно подается с опережением, после подачи второго компонента включается лазерный источник 5, лазерное излучение которого 8 узлом ввода и фокусировки излучения 6 фокусируется на специальную мишень 9, где происходит оптический пробой 7 с возникновением плазмы оптической искры. Следующая за этим серия лазерных импульсов при одновременном увеличении расхода второго компонента приводит к появлению в зоне фокусировки соотношения компонентов, благоприятного для воспламенения смеси. Развивающийся затем очаг воспламенения поджигает всю камеру сгорания, а лазер выключается.

Разработанная камера жидкостного ракетного двигателя или газогенератора с лазерным устройством воспламенения компонентов топлива и способ ее запуска были испытаны в процессе экспериментальных исследований по лазерному воспламенению компонентов ракетного топлива на стендах ГНЦ ФГУП «Центр Келдыша». В качестве компонентов использовались следующие топливные пары: кислород-водород, кислород-метан, кислород-керосин, кислород-этанол. Использовались малогабаритные твердотельные лазеры с длиной волны излучения 1,06 мкм, работающие в импульсных режимах с длительностью импульсов ~8 нс. Масса лазеров с блоком питания не превышает 800 г. В экспериментах с устройствами с направлением и фокусированием лазерного луча в объем рабочей смеси камеры сгорания, необходимые уровни энергии лазерных импульсов составили ~(20-50) мДж, а в остальных случаях, в которых излучение фокусируется на поверхность или мишень, - (1-15) мДж. Длительность серий включения лазера составляла 1 с, а частота следования импульсов - 10 Гц. При этом были апробированы различные временные режимы подачи компонентов - как с опережением окислителя, так и горючего.

Источники информации

1. «Конструкции и проектирование жидкостных ракетных двигателей»/ Под. ред. Г.Г.Гахуна, М., Машиностроение, 1989, стр.77, рис.4.7.

2. Патент РФ на изобретение № 2400644 с приоритетом от 09.06.2009. «Ракетный двигатель малой тяги, работающий на несамовоспламеняющихся газообразном окислителе и жидком горючем, и способ его запуска» Опубл. 20.12.2010 г.

Класс F02K9/95 отличающиеся способами и устройствами для пуска и зажигания

способ воспламенения заряда твердого топлива и ракетный двигатель твердого топлива для его реализации -  патент 2527903 (10.09.2014)
устройство для лазерного воспламенения топлива в газогенераторе жидкостного ракетного двигателя -  патент 2527500 (10.09.2014)
устройство для химического зажигания компонентов топлива в жрд -  патент 2509910 (20.03.2014)
устройство воспламенения заряда твердотопливного ракетного двигателя -  патент 2500913 (10.12.2013)
способ получения многослойной ленты для тепловыделяющего элемента -  патент 2499907 (27.11.2013)
ракетный двигатель твердого топлива -  патент 2491441 (27.08.2013)
система запуска криогенного жидкостного ракетного двигателя космического объекта -  патент 2486113 (27.06.2013)
способ подачи пускового горючего в камеру жидкостного ракетного двигателя -  патент 2485340 (20.06.2013)
жидкостный ракетный двигатель -  патент 2485339 (20.06.2013)
камера жидкостного ракетного двигателя -  патент 2485338 (20.06.2013)
Наверх