способ очистки сточных вод от метанола
Классы МПК: | C02F1/76 галогенами или соединениями галогенов C02F103/36 от производства органических соединений |
Автор(ы): | Саркаров Рамидин Акбербубаевич (RU), Коняев Сергей Владимирович (RU), Ахмедов Магомед Идрисович (RU), Бариева Джарият Ибрагимовна (RU), Абдуллаев Мустангер Шарапудинович (RU), Селезнев Вячеслав Васильевич (RU) |
Патентообладатель(и): | Открытое акционерное общество "Газпром" (RU) |
Приоритеты: |
подача заявки:
2011-06-16 публикация патента:
10.12.2012 |
Изобретение относится к обработке воды. В метанолсодержащие сточные воды вводят при перемешивании нитрит натрия и соляную кислоту. Образующийся метилнитрит направляют на абсорбцию. Насыщенный раствор абсорбента подают в ректификационную колонну для регенерации метанола. Кубовый остаток после регенерации метанола нейтрализуют и направляют в начало процесса очистки воды от метанола. Изобретение обеспечивает глубокую очистку сточных вод от метанола до уровня ПДК, регенерацию метанола, позволяет снизить расход реагентов. 1 табл., 10 пр.
Формула изобретения
Способ очистки сточных вод от метанола, включающий введение нитритного соединения в присутствии кислоты, абсорбцию выделившегося метилнитрита, отличающийся тем, что в качестве нитритного соединения используют нитрит натрия в мольном отношении к метанолу, равном 1,01-1,15, в присутствии соляной кислоты в мольном отношении к нитриту натрия, равном 1,00-1,05, абсорбцию метилнитрита проводят 18-26 мас.%-ным раствором гидроксида натрия при температуре 3-55°C с последующей регенерацией метанола ректификацией, а кубовый остаток раствора, содержащий нитрит натрия, после нейтрализации возвращают в начало процесса очистки метанолсодержащих сточных вод.
Описание изобретения к патенту
Изобретение относится к обработке воды и может быть использовано при очистке метанолсодержащих сточных вод от метанола, в частности сточных вод нефтегазовой промышленности.
Для очистки вод от метанола в зависимости от ее химического состава и концентрации используются различные биологические и физико-химические способы.
При очистке сточных вод с высокой концентрацией метанола биологические способы неприменимы, так как при применении этого метода предельная концентрация метанола в очищаемых водах не должна превышать 30 мг/дм3.
Известен способ (М.В.Бренчугина, А.С.Буйновский, З.Р.Исмагилов, В.В.Кузнецов. Разработка технологии очистки производственных вод газоконденсатных месторождений от метанола. Изв. Томского полит. ун-та, 2007, т.311, № 3, с.64-68) очистки сточной воды газоконденсатных месторождений от метанола до ПДК путем каталитического окисления его до диоксида углерода и воды с применением катализаторов на основе оксида алюминия. Способ предусматривает предварительную ректификационную регенерацию метанола из сточных вод и последующую доочистку от метанола кубового остатка в аппарате с кипящим слоем катализатора. Концентрация метанола в конденсированной парогазовой фазе на выходе из реактора составляет 2,2±0,2 мг/дм3, что ниже ПДК по метанолу для вод хозяйственно-питьевого назначения. К недостаткам способа относятся относительно низкий уровень очистки, высокая температура проведения процесса очистки (430-450°С) и наличие безвозвратных потерь метанола.
Известен способ очистки водного раствора от метанола путем его испарения, контактирования паров с окисью меди, промотированной окислами хрома, цинка и алюминия, при 170-250°С в присутствии воздуха (А.с. СССР № 939404. Способ очистки водного раствора от метанола. - Опубл. 30.06.1982 г. Бюлл. № 24). Недостатком данного способа является низкая степень очистки (остаточное содержание метанола составляет 5 мг/дм 3 и выше).
Наиболее близким к предполагаемому способу, по существу, используемого химического процесса является метод (А.с. СССР № 164255. Способ определения малых количеств метилового спирта в присутствии альдегидов и кетонов. - Опубл. 13.08.1964 г., Бюлл. № 15), направленный на определение малых количеств метанола в водных растворах в присутствии альдегидов и кетонов за счет перевода метилового спирта в метилнитрит путем введения в раствор нитрита натрия и кислоты. Образующийся метилнитрит полностью переходит в газовую фазу и абсорбируется раствором йодистоводородной кислоты или йодистого калия, а выделившийся молекулярный йод оттитровывают тиосульфатом натрия. Способ позволяет довести содержание метанола в водных средах до значений ПДК. Недостатком данного способа является высокий расход химреагентов и невозможность регенерации метанола.
Целью предлагаемого изобретения является обеспечение глубокой очистки метанолсодержащих сточных вод от метанола до уровня ПДК (0,1-3,0 мг/дм3), регенерация метанола и снижение расхода реагентов.
Поставленная цель достигается тем, что очистку сточных вод от метанола проводят введением в воду нитрита натрия при мольном соотношении к метанолу, равном 1,01-1,15, и соляной кислоты при мольном соотношении к нитриту натрия, равном 1,00-1,05. Для абсорбции метилнитрита используют 18-26 масс.% раствора гидроксида натрия, а абсорбцию метилнитрита проводят при температуре 3-55°С до насыщения абсорбента. Регенерацию метанола осуществляют ректификацией раствора после абсорбции метилнитрита, а кубовый остаток после регенерации метанола, содержащий нитрит натрия, возвращают в начало процесса очистки метанолсодержащих сточных вод.
Протекающий при этом процесс описывается суммарным уравнением
Метилнитрит за счет низкой температуры кипения (минус 12°С) легко удаляется из воды и переходит в газовую фазу, благодаря чему вода очищается от метанола до концентраций, не превышающих ПДК. Далее метилнитрит поглощается раствором гидроксида натрия (абсорбент) и подвергается щелочному гидролизу по уравнению
Разница в физико-химических свойствах компонентов насыщенного раствора абсорбента позволяет выделить метанол с помощью ректификации. Нитрит натрия при этом, не претерпевая химических превращений, остается в растворе и возвращается в начало процесса очистки. Использование предполагаемого способа позволяет очистить воду от метанола до значений ПДК и регенерировать как метанол, так и нитрит натрия для вторичного использования.
Введение нитрита натрия в мольном его отношении к метанолу ниже 1,01 не обеспечивает очистку вод от метанола до необходимого уровня, а при мольном отношении выше 1,15 увеличивается расход реагента. Введение соляной кислоты в мольном ее отношении к нитриту натрия менее 1,00 также не обеспечивает необходимой степени очистки, а при увеличении мольного отношения более 1,05 повышается расход кислоты.
Повышение концентрации гидроксида натрия в растворе абсорбента более 26 масс.% приводит к выделению в осадок нитрита натрия и увеличению потерь метанола, а снижение концентрации щелочи менее 18 масс.% - к снижению емкости абсорбента по метанолу, что в свою очередь приводит к ухудшению технологических показателей процесса регенерации метанола и увеличению объема кубового остатка. Возврат кубового остатка после регенерации метанола, содержащего нитрит натрия, в производство обеспечивает снижение расхода реагентов.
При повышении температуры абсорбции метилнитрита более 55°С или ее снижении менее 3°С уменьшается сорбционная емкость абсорбента и увеличиваются потери метанола.
Пример 1
Для очистки воды от метанола в лабораторный стеклянный реактор заливают 1 л воды, содержащей 20 г/л метанола, при перемешивании вводят расчетное количество нитрита натрия марки «ч» и заданное количество соляной кислоты. Нитрит натрия вводят в мольном соотношении к метанолу, равном 1,01-1,15, а соляную кислоту - в мольном соотношении к нитриту натрия, равном 1,00-1,05. Образующийся метилнитрит направляют для поглощения в последовательно соединенные склянки Дрекселя с раствором щелочи, содержащим 23 масс.% гидроксида натрия. Абсорбцию метилнитрита проводят при температуре 25°С. Насыщенный раствор абсорбента подают в ректификационную колонну для регенерации метанола. После каждого опыта отбирают пробы воды, раствора кубового остатка и метанола. Пробы воды анализируют на содержание метанола, кубового остатка - на содержание нитрита натрия, а метанола - на количественные и качественные характеристики. Результаты исследований приведены в таблице 1 (опыты 1-4).
Пример 2
Для регенерации метанола и нитрита натрия в лабораторный стеклянный реактор заливают 1 л воды, содержащей 20 г/л метанола, вводят при перемешивании нитрит натрия марки «ч» в мольном отношении к метанолу 1,05 и соляную кислоту в мольном отношении к нитриту натрия 1,03. Образующийся метилнитрит направляют на абсорбцию в последовательно соединенные склянки Дрекселя с раствором щелочи, содержащим 18-26 масс.% гидроксида натрия. Абсорбцию метилнитрита проводят при температуре 3-55°С. Насыщенный раствор абсорбента подают в ректификационную колонну для регенерации метанола. Кубовый остаток после регенерации метанола, содержащий нитрит натрия и остаточное количество метилового спирта (до 1,5 масс.%), нейтрализуют и направляют в начало процесса очистки воды от метанола. После каждого опыта отбирают пробы воды, раствора кубового остатка и метанола. Пробы воды анализируют на содержание метанола, кубового остатка - на содержание нитрита натрия, а метанола - на количественные и качественные характеристики. Результаты исследований приведены в таблице 1 (опыты 5-10).
Как видно из таблицы, при соблюдении в системе мольных отношений нитрита натрия к метанолу и соляной кислоты к нитриту натрия в пределах 1,01-1,15 и 1,0-1,05 соответственно обеспечивается очистка воды от метанола до уровня ПДК как для вод хозяйственно-питьевого назначения (3,0 мг/дм 3), так и для рыбохозяйственных водоемов (0,1 мг/дм 3). При увеличении содержания гидроксида натрия в абсорбенте более 26 масс.% и увеличении температуры процесса абсорбции более 55°С повышаются потери метанола. Потери метанола повышаются и при снижении температуры абсорбции ниже 3°С.
Таким образом, очистка сточных вод от метанола по предлагаемому способу обеспечивает доведение содержания метанола в воде до значений ПДК и регенерацию метанола и нитрита натрия. Вторичное использование кубового остатка, содержащего нитрит натрия, позволяет существенно снизить расход реагентов.
Улучшение технико-экономических показателей предлагаемого способа очистки сточных вод от метанола обеспечивается за счет снижения экологических платежей, получения товарного метанола и уменьшения расхода реагентов.
Таблица 1 | |||||||
Результаты исследований процессов очистки сточных вод от метанола | |||||||
Опыт | Мольное отношение NaNO2/CH3OH | Мольное отношение HCl/NaNO2 | Содержание NaOH в абсорбенте, масс.% | Температура абсорбции, °С | Остаточное содержание метанола в воде, мг/л | Расход NaNO2 с учетом возврата, г | Потери метанола, % |
Прототип | 2 | 3,5 | - | - | 0,09 | 86,25 | 100 |
1 | 1,01 | 1,00 | 23 | 25 | 2,95 | 0,68 | 1,9 |
2 | 1,05 | 1,02 | 23 | 25 | 2,10 | 2,41 | 2,0 |
3 | 1,10 | 1,04 | 23 | 25 | 0,09 | 4,57 | 1,9 |
4 | 1,15 | 1,05 | 23 | 25 | 0,09 | 6,76 | 2,1 |
5 | 1,05 | 1,03 | 18 | 3 | 2,10 | 0,71 | 7,8 |
6 | 1,05 | 1,03 | 20 | 10 | 1,90 | 0,69 | 2,4 |
7 | 1,05 | 1,03 | 22 | 20 | 2,05 | 0,70 | 2,0 |
8 | 1,05 | 1,03 | 24 | 30 | 1,95 | 0,68 | 2,9 |
9 | 1,05 | 1,03 | 25 | 40 | 2,15 | 0,69 | 5,6 |
10 | 1,05 | 1,03 | 26 | 55 | 2,10 | 0,70 | 9,4 |
Класс C02F1/76 галогенами или соединениями галогенов
Класс C02F103/36 от производства органических соединений