установка для вакуумного термоциклирования панелей фотопреобразователей

Классы МПК:B64G7/00 Имитация космических условий, например для установления условий жизнеобеспечения
G01N3/60 исследование устойчивости, например огнеупорных материалов, к воздействию резких температурных колебаний 
Автор(ы):, , , ,
Патентообладатель(и):Открытое акционерное общество "Научно-исследовательский институт полупроводникового машиностроения" (RU)
Приоритеты:
подача заявки:
2011-06-08
публикация патента:

Изобретение относится к испытаниям космической техники, а именно к установкам для имитации тепловых режимов работы элементов космических аппаратов. Установка для вакуумного термоциклирования панелей фотопреобразователей содержит вакуумную камеру, состоящую из двух сообщающихся отсеков. В одном отсеке установлены параллельно две криопанели с возможностью размещения между ними испытываемой панели, в другом отсеке - тепловая панель, выполненная в виде блока ламп накаливания. Криопанели и тепловая панель расположены вертикально, а отсек тепловой панели размещен над отсеком криопанелей. Криопанели установлены с возможностью дополнительного размещения между ними тепловой панели. Тепловая панель снабжена механизмом возвратно-поступательного перемещения в вертикальной плоскости и теплоизоляцией со стороны, обращенной к криопанели. Решение направлено на повышение точности тепловой имитации условий космоса. 2 з.п. ф-лы, 4 ил. установка для вакуумного термоциклирования панелей фотопреобразователей, патент № 2471685

установка для вакуумного термоциклирования панелей фотопреобразователей, патент № 2471685 установка для вакуумного термоциклирования панелей фотопреобразователей, патент № 2471685 установка для вакуумного термоциклирования панелей фотопреобразователей, патент № 2471685 установка для вакуумного термоциклирования панелей фотопреобразователей, патент № 2471685

Формула изобретения

1. Установка для вакуумного термоциклирования панелей фотопреобразователей, включающая вакуумную камеру, состоящую из двух сообщающихся отсеков, в одном из которых установлены параллельно две криопанели с возможностью размещения между ними испытываемой панели, в другом - тепловая панель в виде блока ламп накаливания, отличающаяся тем, что криопанели и тепловая панель расположены вертикально, а отсек тепловой панели размещен над отсеком криопанелей, которые установлены с возможностью дополнительного размещения между ними тепловой панели, при этом последняя снабжена механизмом возвратно-поступательного перемещения в вертикальной плоскости и теплоизоляцией со стороны, обращенной к криопанели.

2. Установка по п.1, отличающаяся тем, что механизм перемещения тепловой панели выполнен в виде мотор-редуктора с управлением от частотного привода.

3. Установка по п.1, отличающаяся тем, что отсек криопанелей выполнен в виде горизонтального цилиндрического корпуса.

Описание изобретения к патенту

Изобретение относится к испытаниям космической техники, а именно к установкам для имитации тепловых режимов работы элементов космических аппаратов, и может быть использовано для проведения испытания полногабаритных, крупногабаритных панелей фотопреобразователей (ФП) на воздействие термоциклов.

Основное требование к установкам для термоциклических испытаний в вакууме типовых панелей фотопреобразователей быстрая смена температуры в диапазоне от минус 190°C до плюс 200°C.

Известные установки для вакуумного термоциклирования имеют в основном две конфигурации. Первые установки однокамерные, и смена температур реализуется попеременной работой нагревателей и холодильников, которые размещаются в одной камере. Термоциклирование осуществляется в режиме плотного контакта и теплообмена между испытываемой конструкцией и нагревателя или холодильника.

В качестве иллюстрации можно привести известные установки для вакуумного термоциклирования, приведенные в описаниях к SU 573610, МПК2 F04B 37/14, G01N 3/18, SU 1508006, МПК4 F04B 37/14.

Недостатком известных конструкций является высокая инерционность системы при установлении тепловых режимов, связанная с включением и отключением нагревательного элемента. Кроме того, известные установки не позволяют испытывать крупногабаритные изделия и, в частности, панели фотопреобразователей космических аппаратов.

Вторые - двухкамерные с горячей и холодной температурными зонами, в которых испытываемое изделие перемещается из низкотемпературной зоны с криопанелями в высокотемпературную с тепловой панелью. Термоциклирование осуществляется в условиях теплового поглощения и излучения. К числу таких относится устройство для термоциклических испытаний панелей фотоэлектрических батарей, приведенное в описании к RU 2040076, МПК6 H01L 31/18. Оно содержит вакуумную камеру с двумя параллельными плоскими криопанелями в холодном отсеке и нагревателем в виде блока ламп накаливания в горячем отсеке с одной криопанелью, а также с реечным механизмом перемещения испытываемой панели.

Недостатками известного устройства являются возможность механических повреждений хрупких испытываемых панелей в процессе их перемещения между температурными зонами, сложность механизма перемещения и его размещение в вакуумной камере, большие горизонтальные габариты установки, а также длительное время вакуумной откачки в связи с большими объемами вакуумной камеры.

В основу настоящего изобретения положена задача создания установки для термоциклических испытаний в вакууме панелей фотопреобразователей, которая обеспечит достижение технического результата, выражающегося в повышении точности тепловой имитации условий космоса, сохранности испытываемой ФП от механических повреждений, упрощении конструкции, снижении потребляемой электроэнергии и уменьшении производственных площадей, занимаемых установкой.

Технический результат достигается тем, что в установке для вакуумного термоциклирования панелей фотопреобразователей, включающей вакуумную камеру, состоящую из двух сообщающихся отсеков, в одном из которых установлены параллельно две криопанели с возможностью размещения между ними испытываемой панели, в другом тепловая панель в виде блока ламп накаливания, причем криопанели и тепловая панель расположены вертикально, а отсек тепловой панели размещен над отсеком криопанелей, которые установлены с возможностью дополнительного размещения между ними тепловой панели, при этом последняя снабжена механизмом возвратно-поступательного перемещения в вертикальной плоскости и теплоизоляцией со стороны, обращенной к криопанели. Механизм перемещения тепловой панели может быть выполнен в виде мотор-редуктора с управлением от частотного привода. Отсек криопанелей может быть выполнен в виде горизонтального цилиндрического корпуса.

Вертикальное расположение криопанелей и тепловой панели в соответствующих отсеках друг над другом позволяет не только уменьшить производственные площади, занимаемые установкой, но и снизить энергозатраты за счет возвратно-поступательного перемещения тепловой панели в вертикальной плоскости, уменьшения сроков вакуумной откачки и отказа от криопанели в тепловом отсеке.

Снабжение тепловой панели механизмом перемещения и теплоизоляцией, а также возможность ее размещения между криопанелями и испытываемой панелью позволяют, во-первых, проводить термоциклы при неподвижном положении испытываемой панели, предотвращая от механических повреждения. Во-вторых, по сравнению с прототипом, исключить дорогостоящую вспомогательную криопанель, снижая при этом не только стоимость установки, но и потребление энергоносителей на проведение термоциклирования в вакууме.

Выполнение механизма в виде мотор-редуктора с управлением от частотного привода позволяет осуществлять перемещение тепловой панели с заданной скоростью, имитируя смену тепловых режимов, близкую к космическим орбитам при переходе космического аппарата из тени Земли и Луны под Солнце и, наоборот.

На фиг.1 схематично изображен общий вид поперечного сечения установки для вакуумного термоциклирования панелей ФП в режиме «захолаживания» панели; на фиг.2 - общий вид продольного сечения установки в режиме «захолаживания» панели; на фиг.3 - общий вид поперечного сечения установки в режиме нагрева панели ФП; на фиг.4 - общий вид продольного сечения установки в режиме нагрева панели ФП.

Установка для вакуумного термоциклирования панелей ФП содержит вакуумную камеру, состоящую из горизонтального цилиндрического отсека 1 с двумя вертикальными параллельными криопанелями 2, 3 и отсека 4 в виде прямоугольного параллепипеда для размещения тепловой панели 5. Прямоугольный корпус отсека 4 установлен на корпусе цилиндрического отсека 1 вдоль продольной образующей, они сообщаются через продольный паз, соответствующий размерам тепловой панели 5, и герметично соединены. Криопанели 2, 3 установлены в отсеке 1 на расстоянии, обеспечивающем размещение тепловой панели 5 в пространстве между ними и испытываемой панелью ФП 6.

Тепловая панель 5 состоит из секций галогенных ламп, установлена в отсеке 4 в подвешенном положении и снабжена механизмом 7 вертикального возвратно-поступательного перемещения в пространстве между одной из криопанелей, например криопанелью 2 и испытываемой панелью 6. Поверхность тепловой панели 5, обращенная к криопанели 2, снабжена теплозащитой. Механизм 7 перемещения размещается вне корпуса отсека 4 и может быть выполнен в виде мотор-редуктора с управлением от частотного привода.

Криопанели 2, 3 подключены к системе охлаждения 8 регулирования подачи криогенной жидкости.

Корпус цилиндрического отсека 1 с одного торца соединен с системой вакуумирования 9. С другого торца размещена дверь 10 для загрузки-выгрузки испытываемых панелей ФП 6.

Установка снабжена датчиками 11, 12 для контроля температуры на испытываемых поверхностях панели ФП 6.

Установка для вакуумного термоциклирования работает следующим образом.

Испытываемую панель ФП 6 загружают через дверь 10 в отсек 1, размещая между криопанелями 2, 3, и устанавливают на ней датчики 11, 12. Включают систему вакуумирования 9. При достижении требуемого вакуума включают систему охлаждения 8. При достижении заданной отрицательной температуры начинается время отсчета выдержки панели ФП 6 при отрицательной температуре.

За определенное время до окончания времени выдержки при отрицательной температуре включают тепловую панель 5 на расчетную мощность.

После окончания выдержки при отрицательной температуре включают механизм 7 и тепловую панель 5 из отсека 4 опускают с заданной скоростью, перемещая в отсек 1 в пространство между криопанелью 2 и испытываемой панелью ФП 6. Фиксируют положение тепловой панели 5 выключением механизма 7. Включение механизма 7 перемещения тепловой панели 5 производится по программе, а выключение от конечных выключателей, установленных в конечных положениях тепловой панели 5 внутри отсека 4 вакуумной камеры.

Зафиксировав положение тепловой панели 5, после достижения ею заданной температуры начинают отсчет времени выдержки при положительной температуре. По окончании времени выдержки тепловую панель 5 перемещают с заданной скоростью в отсек 4, и термоцикл завершен.

На момент окончания времени выдержки испытываемой панели ФП 6 при положительной температуре криопанели 2, 3 имеют заданную отрицательную температуру, и начинается следующий термоцикл.

Класс B64G7/00 Имитация космических условий, например для установления условий жизнеобеспечения

способ моделирования физиологических эффектов пребывания на поверхности планет с пониженным уровнем гравитации -  патент 2529813 (27.09.2014)
способ наземной имитации полета космических аппаратов в космосе -  патент 2527632 (10.09.2014)
способ тепловых испытаний приборного отсека летательного аппарата -  патент 2526406 (20.08.2014)
многофункциональный учебно-тренировочный комплекс для подготовки космонавтов (астронавтов) к внекорабельной деятельности (варианты) -  патент 2524503 (27.07.2014)
способ имитации внешних тепловых потоков для наземной отработки теплового режима космического аппарата -  патент 2519312 (10.06.2014)
функционально-моделирующий стенд для создания условий интерактивного безопорного пространства и пониженной гравитации -  патент 2518478 (10.06.2014)
способ испытаний многозвенной механической системы космического аппарата на функционирование и устройство для его осуществления -  патент 2516880 (20.05.2014)
тренажер внекорабельной деятельности космонавтов -  патент 2506648 (10.02.2014)
тренажерный комплекс орбитального узлового модуля российского сегмента международной космической станции -  патент 2506647 (10.02.2014)
грузовой макет ракетоносителя -  патент 2491211 (27.08.2013)

Класс G01N3/60 исследование устойчивости, например огнеупорных материалов, к воздействию резких температурных колебаний 

стенд для исследования энергообмена при техногенном внедрении -  патент 2526592 (27.08.2014)
стенд для исследования энергообмена при разрушении горных пород -  патент 2523088 (20.07.2014)
устройство для испытаний образцов на трещинообразование -  патент 2507499 (20.02.2014)
устройство для испытаний образцов на термоусталость -  патент 2433385 (10.11.2011)
способ определения термоустойчивости бентонитовых глин -  патент 2380682 (27.01.2010)
способ определения морозостойкости камня -  патент 2380681 (27.01.2010)
способ определения пространственного распределения температур в теплозащитных конструкциях из композиционных материалов на основе термореактивных полимеров -  патент 2279661 (10.07.2006)
установка для испытания лопаток турбомашин на термомеханическую усталость -  патент 2250451 (20.04.2005)
способ испытания материалов на термостойкость -  патент 2117274 (10.08.1998)
устройство для испытания полых изделий на термостойкость -  патент 2091753 (27.09.1997)
Наверх