способ разбраковки полупроводниковых изделий
Классы МПК: | G01R31/26 испытание отдельных полупроводниковых приборов |
Автор(ы): | Горлов Митрофан Иванович (RU), Смирнов Дмитрий Юрьевич (RU), Золотарева Екатерина Александровна (RU) |
Патентообладатель(и): | Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" (RU) |
Приоритеты: |
подача заявки:
2009-12-02 публикация патента:
10.01.2013 |
Изобретение относится к микроэлектронике, а именно к способам обеспечения качества и надежности полупроводниковых изделий (диодов, транзисторов и интегральных схем), и может быть использовано для разбраковки по критерию потенциальной надежности как в процессе производства, так и на входном контроле на предприятиях-изготовителях радиоэлектронной аппаратуры. Сущность способа разбраковки полупроводниковых изделий заключается в измерении интенсивности шума до и после внешнего воздействия рентгеновским излучением дозой порядка 10 кР. Техническим результатом изобретения является повышение оперативности процесса разбраковки полупроводниковых изделий по потенциальной надежности. 1 табл.
Формула изобретения
Способ разбраковки полупроводниковых изделий, включающий измерение интенсивности шума до и после внешнего воздействия, отличающийся тем, что на изделие воздействуют рентгеновским излучением дозой порядка 10 кР.
Описание изобретения к патенту
Изобретение относится к микроэлектронике, а именно к способам обеспечения качества и надежности полупроводниковых изделий (ППИ) (диодов, транзисторов и интегральных схем), и может быть использовано для разбраковки по критерию потенциальной надежности как в процессе производства, так и на входном контроле на предприятиях-изготовителях радиоэлектронной аппаратуры.
Известно из основ надежности ППИ [1], что качество и надежность конкретного изделия определяется количеством содержащихся в нем внутренних дефектов (дислокаций, неконтролируемых примесей, другие точечные дефекты). При радиационном облучении ППИ одним из основных эффектов является накопление заряда на внутренних дефектах, изменяющее поверхностное состояние на границе раздела диэлектрик - полупроводник, внутреннее электрическое поле р-n-перехода, что приводит к изменению электрических параметров, отражающих повышение концентрации дефектов и, как результат, снижение надежности каждого изделия.
Известно также из результатов технических отбраковочных и диагностических испытаний ППИ [2], что наличие дефектов в структуре ППИ неизбежно отражается на ходе процессов, связанных с переносом тока через структуру, что приводит к флуктуациям проводимости и воспринимается во внешней цепи как низкочастотный, (НЧ) шум, уровень которого пропорционален скорости деградации структуры.
Наиболее близким [3] является способ испытаний интегральных схем (ИС) до разделения пластин на кристаллы, включающий в себя задание коэффициента жесткости, связывающего ток в подложке со сроком службы ИС, который зависит от увеличения плотности поверхностных состояний на границе раздела Si-SiO2 и воздействия ионизирующего излучения (ИИ) до дозы, вызывающей отказ изделия. Недостатком этого способа является необходимость проведения дополнительных испытаний для установления связи срока службы изделия с током в подложке, связанным с критической величиной плотности поверхностных состояний.
Изобретение направлено на повышение оперативности процесса разбраковки ППИ по потенциальной надежности. Это достигается тем, что до и после воздействия рентгеновским излучением проводят измерение НЧ шума изделия и по относительному увеличению величины НЧ шума судят о потенциальной надежности изделий.
Время воздействия и доза устанавливаются экспериментально для каждого изделия.
Пример осуществления способа. На 15 схемах случайной выборки типа ОР64 (операционный усилитель, выполненный по биполярной технологии) измерено значение шума на частоте 1000 Гц методом прямого измерения в цепи питания до и после воздействия рентгеновским излучением дозой 10кР, не приводящей к отказу изделий. Облучение проводилось на установке УРС 55 мощностью излучения 620 мР/сек.
Результаты измерений , а также величины относительного изменения шума до и после облучения К представлены в таблице.
Интенсивность шумов , мкВ2, ИС типа ОР64 в цепи питания на частоте 1000 Гц при воздействии рентгеновского излучения | |||
№ ИС | Исходное значение | Значение , мкВ2, после облучения | K |
1 | 1,86 | 2,30 | 1,24 |
2 | 2,65 | 3,40 | 1,28 |
3 | 2,05 | 2,61 | 1,27 |
4 | 2,41 | 3,03 | 1,26 |
5 | 2,93 | 3,81 | 1,30 |
6 | 2,32 | 2,64 | 1,14 |
7 | 2,52 | 2,83 | 1,12 |
8 | 2,16 | 2,41 | 1.11 |
9 | 2,70 | 3,07 | 1,14 |
10 | 2,78 | 3,24 | 1,17 |
11 | 2,32 | 2,48 | 1,07 |
12 | 2,76 | 2,92 | 1,06 |
13 | 2,32 | 2,49 | 1,07 |
14 | 1,92 | 2,11 | 1,10 |
15 | 2,32 | 2,53 | 1,09 |
Из таблицы видно, что ИС № 5 имеет максимальное относительное изменение шума. При испытаниях на безотказность (500 ч, 85°С) эта ИС имела параметрический отказ.
Источники информации
1. Чернышев А.А. Основы надежности полупроводниковых приборов и интегральных микросхем. - М.: Радио и связь, 1988. - 256 с.
2. Горлов М.И. Технологические отбраковочные и диагностические испытания полупроводниковых изделий / М.И.Горлов, В.А.Емельянов, Д.Л.Ануфриев. - Мн.: Белорусская наука, 2006. - 367 с.
3. Патент США 4816753. МКИ G01R 31/26, опубл. 26.03.89 г.
Класс G01R31/26 испытание отдельных полупроводниковых приборов