способ определения количественного содержания акрилонитрила в выдыхаемом воздухе методом газовой хроматографии

Классы МПК:G01N33/497 газообразных биологических материалов, например продуктов дыхания
G01N30/02 колоночная хроматография
Автор(ы):, , , ,
Патентообладатель(и):Федеральное бюджетное учреждение науки "Федеральный научный центр медико-профилактических технологий управления рисками здоровью населения" (ФБУН "ФНЦ медико-профилактических технологий управления рисками здоровью населения") (RU)
Приоритеты:
подача заявки:
2012-03-22
публикация патента:

Изобретение относится к медицинским токсикологическим исследованиям, в частности к санитарной токсикологии. Способ характеризуется тем, что производят отбор пробы выдыхаемого воздуха объемом не менее 1 дм3 с накоплением его в пакете, осуществляют его нагрев в течение 30 минут при температуре 56-64°C, далее воздух прокачивают через сорбционную трубку через сорбент Tenax со скоростью 0,2 л/мин в течение 10 минут, затем сорбционную трубку с пробой воздуха подвергают термодесорбции путем нагрева до температуры 280°C в термодесорбере и пропускают через нее газ - азот, унося анализируемый воздух в ловушку термодесорбера, которая охлаждена до минус 10°C, далее ловушку нагревают до 250°C, а сконцентрированную пробу воздуха газом-носителем азотом переносят в рабочую капиллярную колонку газового хроматографа для анализа, осуществляют деление потока газа-носителя и воздуха как 1:14, а количественное содержание акрилонитрила устанавливают по градуировочному графику методом абсолютной калибровки по стандартным смесям. Достигается высокая точность и чувствительность анализа. 1 прим., 7 табл., 1 ил.

Формула изобретения

Способ определения количественного содержания акрилонитрила в выдыхаемом воздухе методом газовой хроматографии, характеризующийся тем, что производят отбор пробы выдыхаемого воздуха объемом не менее 1 дм3 с накоплением его в пакете, осуществляют его нагрев в течение 30 мин при температуре 56-64°C, далее воздух прокачивают через сорбционную трубку через сорбент Tenax со скоростью 0,2 л/мин в течение 10 мин, затем сорбционную трубку с пробой воздуха подвергают термодесорбции путем нагрева до температуры 280°C в термодесорбере и пропускают через нее газ - азот, унося анализируемый воздух в ловушку термодесорбера, которая охлаждена до минус 10°C, далее ловушку нагревают до 250°C, а сконцентрированную пробу воздуха газом-носителем азотом переносят в рабочую капиллярную колонку газового хроматографа для анализа, осуществляют деление потока газа-носителя и воздуха как 1:14, а количественное содержание акрилонитрила устанавливают по градуировочному графику методом абсолютной калибровки по стандартным смесям.

Описание изобретения к патенту

Изобретение относится к медицинским токсикологическим исследованиям, в частности к санитарной токсикологии, и может быть использовано для количественного определения акрилонитрила в выдыхаемом воздухе. Изобретение может быть применено в медицинской лабораторной практике.

Из уровня техники неизвестны методы определения акрилонитрила в выдыхаемом воздухе.

Известны способы количественного определения в выдыхаемом воздухе этанола (авт. свид. СССР № 207465, № 1666956); концентрации медиаторов (ацетилхолина, гистамина, серотонина, суммарных катехоламинов) нейроэндокринной системы легких у человека (авт. свид. СССР № 1429023); супероксидантной активности выдыхаемого воздуха у больных и здоровых людей (патент РФ № 2128338).

Также известен ряд технических решений по определению акрилонитрила в воздухе (авт. свид. СССР № 1059507, чувствительность определения 0,05 мг/м3 ; авт. свид. СССР № 1275286, чувствительность определения 0,02 мг/м3; авт. свид. СССР № 1422143, чувствительность определения 0,005 мг/м3 ; авт. свид. СССР № 1493948, чувствительность определения 0,005 мг/м3 ). Принцип реализации указанных известных изобретений заключается в аспирировании воздуха через поглотитель, заполненный раствором перманганата калия, с последующей обработкой различными реагентами и проведением газохроматографического анализа полученной пробы.

Недостатком указанных известных способов является низкая чувствительность.

Технический результат предлагаемого изобретения заключается в создании способа определения акрилонитрила в выдыхаемом воздухе с высокой чувствительностью и точностью.

Указанный технический результат достигается заявляемым способом определения количественного содержания акрилонитрила в выдыхаемом воздухе методом газовой хроматографии, характеризующимся тем, что производят отбор пробы выдыхаемого воздуха объемом не менее 1 дм3 с накоплением его в пакете, осуществляют его нагрев в течение 30 минут при температуре 56-64°C, далее воздух прокачивают через сорбционную трубку через сорбент Tenax со скоростью 0,2 л/мин в течение 10 минут, затем сорбционную трубку с пробой воздуха подвергают термодесорбции путем нагрева до температуры 280°C в термодесорбере и пропускают через нее газ - азот, унося анализируемый воздух в ловушку термодесорбера, которая охлаждена до минус 10°C, далее ловушку нагревают до 250°C, а сконцентрированную пробу воздуха газом-носителем азотом переносят в рабочую капиллярную колонку газового хроматографа для анализа, осуществляют деление потока газа-носителя и воздуха как 1:14, а количественное содержание акрилонитрила устанавливают по градуировочному графику методом абсолютной калибровки по стандартным смесям.

Достижение указанного технического результата обеспечивается за счет следующего.

Для исследований микросостава выдыхаемого воздуха наиболее желательным сочетанием аналитических параметров является такое, при котором реализуется концентрационная чувствительность на уровне 0,01 млрд-1 и быстродействие 0,1 с при объеме газовой пробы 1000 см 3. Кроме того, в рамках единого метода должны регистрироваться различные газообразные молекулы с близкой к 100% селективностью. На практике для повышения чувствительности жертвуют быстродействием или точностью. Этот путь реализуется при применении различных методов отбора пробы выдыхаемого воздуха и пробоподготовки. Для этого используются:

- подготовка пробы для анализа в выдыхаемом воздухе в реальном масштабе времени;

- подготовка пробы для анализа в выдыхаемом воздухе с усреднением по нескольким выдохам;

- подготовка пробы для анализа в выдыхаемом воздухе с накоплением пробы выдоха и концентрированном на сорбционные трубки с последующей термодесорбцией при объеме газовой смеси не менее 1 дм3 (преимущественно от 1 до 10 дм3).

Всем перечисленным параметрам для анализа микросостава выдыхаемого воздуха на содержание акрилонитрила, включая подготовку пробы с накоплением пробы выдоха в пластиковый пакет и концентрированном на сорбционные трубки с последующей термодесорбцией, отвечает капиллярная газовая хроматография.

Выполнение нагрева пробы воздуха в течение 30 минут при температуре 56-64°C обусловлено тем, что при этом лучше происходит сорбция паров акрилонитрила на сорбент. Выбрана такая температура с учетом температуры кипения акрилонитрила Т кип=77°C. При температуре ниже 56°C снижается степень улавливания паров акрилонитрила, при температуре выше 64°C увеличивается летучесть паров акрилонитрила, что приводит к снижению точности и чувствительности метода.

Прокачивание пробы воздуха через сорбционную трубку с сорбентом Tenax со скоростью 0,2 л/мин в течение 10 минут обеспечивает высокую степень извлечения акрилонитрила из пробы и позволяет добиться высокой чувствительности и точности.

Благодаря тому, что в последующем сорбционную трубку с пробой воздуха подвергают термодесорбции путем нагрева до температуры 280С° в термодесорбере, достигается полная десорбция вещества из сорбционной трубки, удается полностью сфокусировать вещества в ловушке, перевести их в хроматографическую колонку узкой зоной и исключить влияние артефактов при отборе пробы и анализе. Использование в качестве сорбента Tenax позволяет концентрировать даже самые летучие соединения. В то же время небольшой объем сорбента в ловушке дает возможность проведения быстрой десорбции и ввода пробы в хроматографическую колонку узкой зоной.

Пропусканием через сорбционную трубку газа - азота обеспечивается ее унос в ловушку термодесорбера. Причем использование в качестве газа азота обусловлено тем, что именно с ним обеспечивается самая высокая эффективность хроматографического определения.

На этапе «Анализ» ловушка термодесорбера нагревается со скоростью 2000°C/мин до 250°C и происходит термическая десорбция сконцентрированного соединения и его перенос газом-носителем в рабочую капиллярную колонку хроматографа.

Выполнение газохроматографического анализа при температурном режиме - режиме программирования: 50°C-100°C-200°C выбрано для выхода на хроматограмме акрилонитрила и других углеводородов, сорбированных на трубке, с более высокой температурой кипения.

Необходимость деления потока газа-носителя и воздуха как 1:14 установлена экспериментальным путем и вызвана тем, что именно при таком делении потока достигается эффективное разделение акрилонитрила с другими углеводородами. Также были проведены исследования при других пропорциях деления газа-носителя и воздуха, а именно, при соотношении 1:0 и 1:20. В обоих случаях степень десорбции акрилонитрила не превышала 93%.

Установление количественного содержания акрилонитрила по градуировочному графику методом абсолютной калибровки по стандартным смесям является традиционным приемом.

Совокупность и последовательность указанных операций, их режимы и позволили достичь высокую степень точности и чувствительности предлагаемого способа.

Предлагаемый способ иллюстрируется рисунком, на котором указана схема отбора проб выдыхаемого воздуха при реализации заявляемого способа.

Предлагаемый способ реализуется следующим образом.

Пример. Вначале производят отбор пробы выдыхаемого воздуха. Для этого в пластиковый пакет 1 вместимостью 1000 см3 (1 дм3) помещают 500-1000 см 3 выдыхаемого воздуха. Пакет 1 закрывают навинчивающейся крышкой с прокладкой из инертной термостойкой резины и помещают в термостат на 30 мин при температуре 60±4°C. Затем пакет соединяют с помощью резиновой трубки 2 с сорбционной трубкой 3 и паровоздушную смесь прокачивают через трубку 3 с помощью аспиратора 4 со скоростью 0,2 л/мин в течение 10 мин.

Экспериментальным путем было установлено, что чувствительность предлагаемого способа по определению акрилонитрила зависит от объема выдыхаемого воздуха для анализа. Данные об этом параметре представлены в таблице 1.

Таблица 1
Объем необходимого выдыхаемого воздуха для анализа
Предполагаемая концентрация акрилонитрила в выдыхаемом воздухе человека Объем выдыхаемого воздуха необходимого для анализа
Менее 0,0001 мкг более 1000 см3
0,0002 мкг - 0,02 мкг 1000 см3

Далее сорбционную трубку устанавливают в термостат термодесорбера. После установки сорбционной трубки и перехода термодесорбера на этап «Десорбция» сорбционная трубка нагревается в термостате до температуры 280°C и через нее продувается газ-азот, унося анализируемый компонент в ловушку термодесорбера, которая охлаждена до минус 10°C.

После выхода хроматографа на готовность, термодесорбер перейдет на этап «Анализ». На этапе «Анализ» кран поворачивается в положение «Анализ» и ловушка термодесорбера быстро нагревается со скоростью 2000°C/мин до температуры 250°C, затем происходит термическая десорбция сконцентрированного соединения и его перенос газом-носителем в рабочую капиллярную колонку хроматографа.

Условия термодесорбции для полной десорбции аналита (акрилонитрила) из сорбционной трубки с пробой приведены в таблице 2.

Таблица 2
Подготовка (начальная) способ определения количественного содержания акрилонитрила в   выдыхаемом воздухе методом газовой хроматографии, патент № 2473905
Температура трубки, °C0
Температура ловушки, °C-10
Расход газа-носителя, мл/мин10
Время стабилизации 0:00:00
Десорбцияспособ определения количественного содержания акрилонитрила в   выдыхаемом воздухе методом газовой хроматографии, патент № 2473905
Температура трубки, °C280
Расход продувочного газа, мл/мин40
Время десорбции, мин00:10:00
Анализ способ определения количественного содержания акрилонитрила в   выдыхаемом воздухе методом газовой хроматографии, патент № 2473905
Температура ловушки (верхняя), °C 250
Скорость нагрева, °C/мин 2000
Время нагрева, мин0:02:00
Очистка трубки способ определения количественного содержания акрилонитрила в   выдыхаемом воздухе методом газовой хроматографии, патент № 2473905
Температура трубки, °C300
Расход продувочного газа, мл/мин50
Время ожидания 0:05:00
Сорбент, используемый в ловушке (Tenax), мг 40-100
Газ-носитель азот

Далее проводят количественное определение акрилонитрила в пробе выдыхаемого воздуха по калибровочному графику.

Калибровочный график строится следующим образом.

Градуировочные характеристики устанавливают на градуировочных растворах акрилонитрила методом абсолютной градуировки. Приготовленные аттестованные растворы хроматографируют на капиллярной колонке не менее 5 раз. На полученной хроматограмме определяют площади пиков определяемого компонента и по средним результатам из 5 серий растворов для градуировки строят градуировочную характеристику. Она выражает зависимость площади пика исследуемого вещества на хроматограмме (мВ - при автоматическом обсчете с использованием программно-аппаратного комплекса) от содержания (мкг). Каждая серия состоит из 7 растворов.

Градуировочные растворы акрилонитрила готовят в мерных пробирках объемом 10 см3. Для этого в каждую пробирку вносят 2 см3 этилового спирта и добавляют исходный раствор для градуировки в соответствии с таблицей 3 и тщательно перемешивают.

Таблица 3
Растворы для установления градуировочной характеристики при определении концентраций акрилонитрила
Номер раствора для градуировки 12 34 56 7
Объем исходного раствора (с=0,797 мг/см3), мм3 3 612 2550 100125
Концентрация вещества, мг/см3 0,00120,0024 0,0048 0,010,02 0,040,05
Содержание вещества, введенное в сорбционную трубку, мкг 0,00120,0024 0,0048 0,010,02 0,040,05

На сорбент Tenax через узкое отверстие в сорбционной трубке на глубину 5-8 мм вводят 1 мм3 одного из градуировочных растворов. Затем сорбционную трубку устанавливают в термостат термодесорбера перед этапом «Десорбция». После установки сорбционной трубки и перехода термодесорбера на этап «Десорбция» сорбционная трубка нагревается в термостате до заданной температуры 280°C и через нее продувается газ, унося анализируемый компонент в ловушку (температура ловушки минус 10°C). После выхода хроматографа на готовность, термодесорбер перейдет на этап «Анализ». На этапе «Анализ» ловушка быстро нагревается со скоростью 2000°C/мин до установленной температуры 250°C, затем происходит термическая десорбция сконцентрированного соединения и его перенос газом-носителем в рабочую капиллярную колонку хроматографа.

Для анализа проб выдыхаемого воздуха на содержание акрилонитрила использовали ряд сорбентов, рекомендованных Национальным стандартом РФ ГОСТ Р ИСО 16017-1-2007. В процессе исследований по выбору сорбента для концентрирования акрилонитрила из выдыхаемого воздуха апробированы следующие сорбенты: Молекулярное сито, Chromosorb 106, Sherocarb TM, трехслойный сорбент Carbopack/Carbosieve S-III/Carboxen, Tenax. Эти сорбенты применяются для отбора полярных и неполярных летучих органических соединений с температурой кипения до 100°C или более. При выборе сорбентов учитывали температуру, которую выдерживают сорбенты при проведении термодесорбции - 300-325°C при минимальном расходе газа-носителя, удельную емкость сорбента (для исключения проскока при отборе проб воздуха) - 35-1200 м 2/г. Средние значения степени термодесорбции изучаемого соединения с сорбентов представлены в таблице 4.

Таблица 4
Средние значения степени термодесорбции акрилонитрила в выдыхаемом воздухе
СорбентВведено, мкгНайдено, мкг Степень десорбции, %
1. Молекулярное сито0,0024 0,00218 91,0
2. Chromosorb 1060,0024 0,0020987,0
3. Sherocarb TM0,0024 0,0022794,5
4. Carbopack/Carbosieve S-III/Carboxen0,0024 0,00232 96,6
5. Porapak N0,0024 0,0023397,2
6. Tenax 0,0024 0,0023497,7

Данные таблицы 4 показывают, что наибольшая степень термодесорбции акрилонитрила из выдыхаемого воздуха достигнута с применением сорбента Tenax, которая составила 97,7%. Для дальнейших исследований для сорбции акрилонитрила из выдыхаемого воздуха использовали в качестве сорбента Tenax.

В ходе экспериментальных исследований подбирались режимы подготовки пробы выдыхаемого воздуха для определения в ней акрилонитрила с высокой степенью точности. Например, были исследованы температурные режимы нагрева собранного воздуха в пакете от 50 до 80°C. Установлено, что только при температуре нагрева в диапазоне 56÷64°C обеспечивается в дальнейшем высокая точность определения содержания акрилонитрила (степень десорбции 97,7%). При температуре 50°C не обеспечивается достаточная степень десорбции (85%), а при температуре, превышающей 64°C, степень десорбции не превышала 93%.

Температура нагрева ловушки в термодесорбере до +250°C выбрана при проверке готовности термодесорбера к использованию. Она заключается в контроле относительного среднего квадратического отклонения (СКО) выходного сигнала хроматографа (сходимость результатов между параллельными измерениями). Контроль СКО проводят по контрольной смеси с определенной концентрацией. Для акрилонитрила была подобрана такая температура 250°C.

При отработке режима скорости пропускания воздуха через сорбционную трубку через сорбент Tenax со скоростью 0,2 л/мин в течение 10 минут учитывали размеры сорбционной трубки (при работе с термодесорбером используются сорбционные трубки длиной 115 мм и внешним диаметром 6 мм) и плотность сорбента (количество Tenax в трубке 250 мг). При таких параметрах режима скорость аспирации воздуха должна быть 0,1-0,2 л/мин. Проверку полноты сорбции при скоростях (0,2 л/мин время аспирации 10 мин; 0,1 л/мин время аспирации 20 мин) аспирации проверяли по отсутствию проскока при отборе проб из приготовленной смеси воздуха с заданной концентрацией акрилонитрила. Отбор проб приготовленной смеси объемом 2 дм3 проводили на последовательно соединенные две сорбционные трубки, заполненные сорбентом Tenax ТА. Обе сорбционные трубки анализировали отдельно. Отсутствие акрилонитрила во второй трубке являлось свидетельством того, что весь акрилонитрил сорбируется на 1 трубке и проскок исследуемого соединения при рекомендуемых условиях отсутствует. Для предлагаемого способа времени аспирации 10 минут достаточно.

Отработка режима деления потока газа-носителя и воздуха именно в соотношении 1:14 производилась следующим образом. Отработка оптимальных газохроматографических параметров для определения акрилонитрила в выдыхаемом воздухе осуществлялась с использованием аппаратно-программного комплекса на базе газового хроматографа способ определения количественного содержания акрилонитрила в   выдыхаемом воздухе методом газовой хроматографии, патент № 2473905 Кристалл-5000способ определения количественного содержания акрилонитрила в   выдыхаемом воздухе методом газовой хроматографии, патент № 2473905 с термоионным детектором (ТИД), капиллярной колонки DB-624 - 30m*0,32mm**1,8µm при температурном режиме: колонка - от 50°C-200°C; испаритель - 200°C; детектор - 320°C; расход газа-носителя 1 (азот) - 1,4 см3 /мин. Оптимальные газохроматографические параметры представлены в таблице 5.

Таблица 5
Газохроматографические параметры для определения акрилонитрила в выдыхаемом воздухе
Режим Температура, °C Расход газа-носителя, мл/мин Деление потока азот:воздух
КолонкаСкорость нагревания, °C/мин
150°C-100°C-200°C 10 1,41:14
2 70-160-18015 1,4 1:20
3 70-160-200 251,4 1:0

В режимах 2 и 3 не наблюдалось достаточно эффективного разделения акрилонитрила с растворителем (в качестве растворителя применяли этиловый спирт, на котором строили градуировочную зависимость).

Определение чувствительности предлагаемого способа в отношении акрилонитрила проводили следующим образом.

Под чувствительностью понимают то минимальное количество вещества, которое может быть обнаружено при помощи данного метода анализа при данных условиях.

Экспериментальным путем было установлено, что наиболее оптимальным сочетанием аналитических параметров для отбора проб выдыхаемого воздуха является накопление пробы выдоха в пластиковый пакет, нагрев в течение 30 минут при температуре 56-64°C и концентрирование паровоздушной смеси на сорбционные трубки с целью достижения требуемой чувствительности. Прецизионность анализа и эффективность извлечения акрилонитрила с сорбционной трубки устанавливали экспериментально способом «введено-найдено» с применением стандартных растворов. На сорбент через узкое отверстие в сорбционной трубке на глубину 5-8 мм вводят 1 мм3 одного из градуировочных растворов. Сорбционную трубку устанавливали в термостат термодесорбера, где происходит термическая десорбция сконцентрированного соединения и его перенос газом-носителем в рабочую капиллярную колонку хроматографа.

Максимальная степень десорбции в предлагаемом способе достигнута с применением сорбента Tenax ТА (Сорбент Tenax® ТА/60-80 меш/10 г (11982) Supelco США, пористый полимерный материал на основе 2,6-дифенил-р-фенилен оксида; обладает сорбционными свойствами относительно широкого круга органических соединений; максимальная температура 370°C) и составила 97,7%. Определение акрилонитрила в выдыхаемом воздухе возможно на уровне 0,002 мкг при объеме воздуха 1000 см3 селективно, достоверно, т.е. с высокой чувствительностью. Предел обнаружения устанавливался в процессе валидации методики анализа путем многократных измерений сигнала холостой пробы и последующего вычисления стандартного отклонения, в то время как в известных способах чувствительность определения акрилонитрила составила 0,02-0,005 мкг.

Предлагаемый способ выполнения измерений обеспечивает получение результатов измерений с погрешностью, не превышающей значений, приведенных в таблицах 6 и 7.

Таблица 6
Диапазон измерений, значения показателей точности, повторяемости, воспроизводимости предлагаемым способом
Наименование определяемого компонента и диапазон измерений, мг/м 3Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), способ определения количественного содержания акрилонитрила в   выдыхаемом воздухе методом газовой хроматографии, патент № 2473905 r, % Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости) способ определения количественного содержания акрилонитрила в   выдыхаемом воздухе методом газовой хроматографии, патент № 2473905 R, % Показатель точности (границы относительной погрешности при вероятности Р=0,95), ±способ определения количественного содержания акрилонитрила в   выдыхаемом воздухе методом газовой хроматографии, патент № 2473905 , %
Акрилонитрил,способ определения количественного содержания акрилонитрила в   выдыхаемом воздухе методом газовой хроматографии, патент № 2473905 способ определения количественного содержания акрилонитрила в   выдыхаемом воздухе методом газовой хроматографии, патент № 2473905 способ определения количественного содержания акрилонитрила в   выдыхаемом воздухе методом газовой хроматографии, патент № 2473905
от 0,0012 до 0,05 вкл. 2,742,75 24,85
способ определения количественного содержания акрилонитрила в   выдыхаемом воздухе методом газовой хроматографии, патент № 2473905 способ определения количественного содержания акрилонитрила в   выдыхаемом воздухе методом газовой хроматографии, патент № 2473905 способ определения количественного содержания акрилонитрила в   выдыхаемом воздухе методом газовой хроматографии, патент № 2473905

Таблица 7
Значения пределов повторяемости и воспроизводимости заявляемого способа при доверительной вероятности Р=0,95
Наименование определяемого компонента и диапазон измерений, мг/м 3Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), rn, % Предел внутрилабораторной воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в одной лаборатории, но в разных условиях), способ определения количественного содержания акрилонитрила в   выдыхаемом воздухе методом газовой хроматографии, патент № 2473905 , %
Акрилонитрил, от 0,0012 до 0,05 вкл. 7,607,62

При этом точность определения акрилонитрила в выдыхаемом воздухе предлагаемым способом составляет 24,85%.

Таким образом, предлагаемый способ обеспечивает высокую точность и высокую степень чувствительности и может быть рекомендован для использования в специализированных медицинских лабораториях.

Класс G01N33/497 газообразных биологических материалов, например продуктов дыхания

способ неинвазивной диагностики непереносимости лактозы -  патент 2527694 (10.09.2014)
способ оценки функциональных резервов организма человека -  патент 2518338 (10.06.2014)
способ детектирования биологических частиц в аэрозоле -  патент 2495426 (10.10.2013)
способ экспресс-диагностики бронхо-легочных заболеваний -  патент 2486522 (27.06.2013)
способ определения концентрации нитратных соединений в атмосферном воздухе -  патент 2485510 (20.06.2013)
способ оценки риска воздействия пестицидов на работающих -  патент 2480755 (27.04.2013)
способ неинвазивной диагностики рака желудка -  патент 2472445 (20.01.2013)
способ оценки функциональных резервов организма человека -  патент 2463593 (10.10.2012)
способ скриннинговой оценки функционального состояния организма человека -  патент 2455645 (10.07.2012)
газовый медицинский масс-спектрометр для диагностики живого организма в режиме реального времени -  патент 2436506 (20.12.2011)

Класс G01N30/02 колоночная хроматография

способ получения активной фармацевтической субстанции для синтеза препаратов галлия-68 -  патент 2522892 (20.07.2014)
способ количественного определения 2,4-дихлорфенола в крови методом газохроматографического анализа -  патент 2521277 (27.06.2014)
способ определения микотоксинов в продуктах животного и растительного происхождения -  патент 2514828 (10.05.2014)
способ определения содержания труднолетучих органических соединений в газообразной среде, композиция в качестве сорбента, применение сорбента -  патент 2510501 (27.03.2014)
регулятор расхода газа -  патент 2509334 (10.03.2014)
способ приготовления высокоэффективных колонок для ионной хроматографии -  патент 2499628 (27.11.2013)
способ анализа оптических и структурных изомеров -  патент 2494390 (27.09.2013)
способ жидкостной хроматографии и устройство для его осуществления -  патент 2493563 (20.09.2013)
способ диагностики патологий, связанных с эндокринными заболеваниями -  патент 2485512 (20.06.2013)
универсальная система химического анализа для газовой хроматографии (усха-гх), устройство крана-дозатора и детектора плотности газов -  патент 2480744 (27.04.2013)
Наверх