силовой тиристор

Классы МПК:H01L29/74 приборы типа тиристоров с четырехзонной регенерацией
Автор(ы):, ,
Патентообладатель(и):Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (RU)
Приоритеты:
подача заявки:
2011-06-08
публикация патента:

Изобретение относится к силовым полупроводниковым приборам, а именно к силовым тиристорам, управляемым током. Техническим результатом изобретения является интеграция функции самозащиты от импульсов перенапряжения в обычные управляемые током тиристоры. Сущность изобретения: в силовом тиристоре, выполненном на основе кремниевой пластины n-типа электропроводности, содержащем с обеих сторон пластины диффузионные р-слои, образующие высоковольтные р-n-переходы с локальным уменьшением глубины залегания р-n-перехода в центре пластины по крайней мере с одной ее стороны, расположенные с той же стороны пластины локальные диффузионные n+-слои, образующие основной эмиттер тиристора и несколько кольцевых вспомогательных эмиттеров, встроенный в р-слой резистор, расположенный между вспомогательными эмиттерами, металлизированные омические контакты, расположенные на поверхности основного эмиттера (катод), на обратной стороне пластины (анод), на поверхности вспомогательных эмиттеров с переходом через их внешнюю границу на поверхность р-слоя, между встроенным в р-слой резистором и расположенным снаружи от него вспомогательным эмиттером создан кольцевой металлизированный омический контакт к р-слою (управляющий электрод) шириной от 0,5 мм до 1,5 мм. 1 ил. силовой тиристор, патент № 2474925

силовой тиристор, патент № 2474925

Формула изобретения

Силовой тиристор, управляемый током и обеспечивающий самозащиту от импульсов перенапряжения, выполненный на основе кремниевой пластины n-типа электропроводности, содержащий с обеих сторон пластины диффузионные р-слои, образующие высоковольтные р-n-переходы с локальным уменьшением глубины залегания р-n-перехода в центре пластины по крайней мере с одной ее стороны, расположенные с той же стороны пластины локальные диффузионные n+-слои, образующие основной эмиттер тиристора и несколько кольцевых вспомогательных эмиттеров, встроенный в р-слой резистор, расположенный между вспомогательными эмиттерами, металлизированные омические контакты, расположенные на поверхности основного эмиттера (катод), на обратной стороне пластины (анод), на поверхности вспомогательных эмиттеров с переходом через их внешнюю границу на поверхность р-слоя, отличающийся тем, что между встроенным в р-слой резистором и расположенным снаружи от него вспомогательным эмиттером создан кольцевой металлизированный омический контакт к р-слою (управляющий электрод) шириной от 0,5 мм до 1,5 мм.

Описание изобретения к патенту

Изобретение относится к силовым полупроводниковым приборам, а именно к конструкции силовых тиристоров, управляемых током.

Известна конструкция управляемого током силового тиристора [1] (Патент США № 4868636, кл. H01L 23/482; H01L 29/41; H01L 29/417; H01L 29/74, опубл. 19.09.1989 г.), содержащая кремниевую пластину n-типа электропроводности, в которой с обеих сторон пластины расположены диффузионные р-слои, образующие высоковольтные р-n-переходы, и с одной стороны расположен локальный диффузионный n+-слой, образующий эмиттер. Металлизированные омические контакты созданы на поверхности локального n+-слоя (катод), на поверхности р-слоя с этой же стороны пластины (управляющий электрод) и на обратной стороне пластины (анод).

Недостаток такой конструкции тиристора заключается в том, что она не имеет функции защиты от импульсов перенапряжения, то есть напряжения прямого направления в закрытом состоянии, превышающего допустимое значение. В таких режимах наиболее вероятно переключение тиристора на рабочий ток в произвольной небольшой области кремниевой пластины и выход тиристора из строя. Поэтому такие тиристоры защищают от импульсов перенапряжения с помощью внешних устройств, подключаемых между анодом и управляющим электродом.

Наиболее близкое к предлагаемому конструктивное решение [2] (J.Dorn, U.Keller, F.-J.Niedernostheide, H.-J.Schulze "Light Triggered Protection Thyristors", Power Electronics Europe, Issue 2, 2002, pp.29-35) относится к конструкции силового фототиристора, то есть тиристора, включаемого световым сигналом (включение током управления не предусмотрено). В [2] обеспечивается самозащита фототиристора от импульсов перенапряжения.

Фототиристор [2] выполнен на основе кремниевой пластины n-типа электропроводности, содержащей с обеих сторон диффузионные р-слои, образующие высоковольтные р-n-переходы с локальным уменьшением глубины залегания p-n-перехода в центре пластины с одной ее стороны. С этой же стороны пластины расположены локальные диффузионные n+-слои, образующие n+-эмиттер основной p-n-р-n-структуры тиристора (основной эмиттер), и несколько кольцевых вспомогательных эмиттеров, между которыми находится встроенный в р-слой резистор, ограничивающий ток первоначального включения, протекающий от центральной области к основному эмиттеру тиристора. Металлизированные омические контакты расположены на поверхности основного эмиттера (катод), на обратной стороне пластины (анод), а также на поверхности вспомогательных эмиттеров с переходом через их внешнюю границу на поверхность р-слоя для осуществления регенеративного включения. При регенеративном включении, когда подается управляющий световой сигнал в центр пластины, анодный ток первоначально включаемого центрального вспомогательного тиристора или тиристоров используется как ток управления для основного тиристора, что существенно увеличивает площадь первоначального включения и предотвращает разрушение тиристора. Встроенный в р-слой резистор ограничивает ток первоначального включения центрального вспомогательного тиристора (тиристоров), имеющих небольшие периферию и объем, для предотвращения их перегрева и разрушения. После включения основного тиристора ток через вспомогательные тиристоры прекращается, так как к их эмиттерам непосредственно не приложен катодный потенциал.

В конструкции [2] самозащита тиристора при приложении импульсов перенапряжения обеспечивается включением тиристора в центре пластины за счет уменьшения глубины залегания р-n-перехода и, соответственно, снижения его напряжения лавинного пробоя в этой области. При начале лавинного умножения неравновесные носители, поступающие в р-базу, вызывают регенеративное включение так же, как описано выше в случае генерации носителей светом. Небольшая периферия центрального вспомогательного тиристора обеспечивает достаточную для его включения плотность неравновесных носителей.

Однако в управляемых током тиристорах проблема самозащиты от перенапряжения не решена.

Техническим результатом предлагаемого решения является интеграция функции самозащиты от импульсов перенапряжения в обычные управляемые током тиристоры.

Технический результат достигается тем, что в предлагаемой конструкции силового тиристора, выполненной на основе кремниевой пластины n-типа электропроводности, с обеих сторон пластины расположены диффузионные р-слои, образующие высоковольтные p-n-переходы с локальным уменьшением глубины залегания p-n-перехода в центре пластины по крайней мере с одной ее стороны, с той же стороны пластины расположены локальные диффузионные n+-слои, образующие основной эмиттер тиристора и несколько кольцевых вспомогательных эмиттеров, между которыми находится встроенный в р-слой резистор, металлизированные омические контакты расположены на поверхности основного эмиттера (катод), на обратной стороне пластины (анод), на поверхности вспомогательных эмиттеров с переходом через их внешнюю границу на поверхность р-слоя, а также между встроенным в р-слой резистором и расположенным снаружи от него вспомогательным эмиттером создан кольцевой металлизированный омический контакт к р-слою (управляющий электрод), имеющий ширину от 0,5 мм до 1,5 мм.

Признаком, отличающим предлагаемое техническое решение от прототипа, является наличие кольцевого металлизированного омического контакта к р-слою (управляющего электрода) шириной от 0,5 мм до 1,5 мм, созданного между встроенным в р-слой резистором и расположенным снаружи от него вспомогательным эмиттером.

Известных технических решений с такими признаками не обнаружено.

Указанная ширина контакта достаточна для присоединения к нему вывода управляющего электрода. При ширине менее 0,5 мм при сборке трудно совместить этот электрод с выводом управляющего электрода корпуса, а при ширине более 1,5 мм неэффективно используется площадь структуры.

На фигуре изображен фрагмент силового тиристора предложенной конструкции. Обозначены: 1 - кремниевая пластина n-типа электропроводности; 2 и 3 - диффузионные р-слои, образующие р-n-переходы 4 и 5; 6 - область локального уменьшения глубины залегания p-n-перехода 5; 7, 8, 9, 10 - вспомогательные эмиттеры; 11 - основной эмиттер; 12 - встроенный резистор R; 13 и 14 - металлизированные омические контакты на поверхности основного эмиттера (катод), и на обратной стороне пластины (анод); 15, 16, 17 и 18 - металлизированные омические контакты на поверхности вспомогательных эмиттеров; 19 - кольцевой металлизированный омический контакт к р-слою (управляющий электрод).

В предложенной конструкции ток управления, протекающий между управляющим электродом и катодом, не протекает через встроенный в р-слой резистор. Таким образом, напряжение управления остается на обычном для силовых тиристоров уровне.

Работа прибора

Прибор включается как обычный тиристор током управления при подаче на управляющий электрод 19 положительного смещения относительно катода 13. При этом осуществляется регенеративное включение - анодный ток первоначально включаемых вспомогательных тиристоров с вспомогательными эмиттерами 9 и 10 является током управления основного тиристора с эмиттером 11.

В закрытом состоянии тиристора в режиме перенапряжения начинается пробой высоковольтного р-n-перехода 5 в области 6, и тиристор включается, начиная с центральной области, с помощью регенеративных вспомогательных эмиттерных областей 7, 8, 9 и 10, что обеспечивает существенное увеличение площади первоначального включения. Встроенный в р-слой резистор 12 ограничивает ток первоначального включения центральных вспомогательных тиристоров с эмиттерами 7 и 8, протекающий от центральной области к основному эмиттеру тиристора. Таким образом, за счет безопасного включения тиристор защищен от разрушения при перенапряжении.

Пример реализации

Были изготовлены тиристоры предложенной конструкции на основе кремниевых пластин n-типа электропроводности с удельным сопротивлением 180 Ом*см и диаметром 56 мм. При изготовлении тиристоров были использованы стандартные технологические процессы, включающие шлифовку кремниевых пластин, очистку их в перекисно-кислотных растворах, фотолитографию, диффузию акцепторных примесей (А1 и В) и локальную диффузию донорной примеси (Р) для формирования, соответственно, р-слоев (2 и 3) и n+-слоев (7-11), создание омических контактов (13-19) путем вакуумного напыления алюминия, формирование прямой и обратной фасок высоковольтных p-n-переходов, очистку и защиту фасок. Перед диффузией акцепторных примесей в центре одной стороны пластины с помощью фотолитографии локальным травлением в смеси фтористоводородной и азотной кислот создавали лунку диаметром 0.5 мм и глубиной порядка 20 мкм. Это обеспечило локальное уменьшение глубины залегания высоковольтного p-n-перехода 5 в области 6 за счет стравливания нарушенного слоя под шлифованной поверхностью и таким образом существенного замедления диффузии А1. Описанная лунка не показана на фигуре, так как локальное уменьшение глубины залегания высоковольтного p-n-перехода может быть достигнуто и другими способами.

Для создания встроенного в р-слой резистора с использованием фотолитографии проводили локальное травление р-слоя в смеси фтористоводородной и азотной кислот с образованием кольцевой канавки шириной 1.3 мм и глубиной порядка 20 мкм, что обеспечило сопротивление R порядка 40 Ом (канавка показана на фигуре над созданным резистором R (12)).

Были изготовлены 3 варианта тиристоров предложенной конструкции с шириной кольцевого управляющего электрода, равной 0,5, 1,0 и 1,5 мм. Для всех тиристоров толщина пластин кремния была равна 870 мкм, глубина диффузионного р-слоя в плоской части 110 мкм, и в области искривления - 40 мкм. Глубина n+-слоя составляла 24 мкм. Толщина напыленного слоя алюминия составляла порядка 15 мкм. При сборке тиристоров в корпуса прижимной вывод управляющего электрода корпуса совмещался с управляющим электродом на пластине (19).

Были изготовлены по 10 тиристоров каждого варианта. Для всех тиристоров измеренные значения напряжения переключения лежали в интервале 3380-3770 В, и значения напряжения лавинного пробоя в обратном направлении лежали в интервале 3820-4240 В. Значения тока управления составили от 63 мА до 121 мА.

При проверке функции самозащиты тиристоров от перенапряжения испытательный стенд вырабатывал импульсы напряжения, превышающего напряжение переключения тиристоров. При этом тиристоры включались на заданный ток 100 А. После испытаний измеряли значения напряжения переключения и значения напряжения лавинного пробоя в обратном направлении и сравнивали со значениями до испытаний. После испытаний значения указанных параметров не изменились, что свидетельствует об отсутствии деградации тиристоров вследствие их эффективной самозащиты.

Источники информации

1. Патент США № 4868636, кл. H01L 23/482; H01L 29/41; H01L 29/417; H01L 29/74, опубл. 19.09.1989 г.

2. J.Dorn, U.Keller, F.-J.Niedernostheide, H.-J.Schulze "Light Triggered Protection Thyristors", Power Electronics Europe, Issue 2, 2002, pp.29-35 (прототип).

Класс H01L29/74 приборы типа тиристоров с четырехзонной регенерацией

тиристор стадии зажигания с развязывающей стадией зажигания -  патент 2501119 (10.12.2013)
способ регулирования напряжения переключения силового полупроводникового прибора -  патент 2474926 (10.02.2013)
способ выключения незапираемого тиристора -  патент 2461913 (20.09.2012)
силовой полупроводниковый прибор с регулируемым напряжением переключения -  патент 2410795 (27.01.2011)
способ управления тиристором и устройство для его осуществления -  патент 2367060 (10.09.2009)
запираемый тиристор и способ его работы -  патент 2335824 (10.10.2008)
силовой полупроводниковый прибор -  патент 2321102 (27.03.2008)
силовой полупроводниковый прибор -  патент 2308121 (10.10.2007)
тиристорный триод-тирод -  патент 2306632 (20.09.2007)
полупроводниковый прибор с самозащитой от пробоя в период восстановления запирающих свойств -  патент 2297075 (10.04.2007)
Наверх