лазерный дальномер (варианты)

Классы МПК:G01C3/08 с использованием детекторов излучения 
Автор(ы):, , , , ,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" (RU)
Приоритеты:
подача заявки:
2011-10-04
публикация патента:

Лазерный дальномер содержит передающий канал для формирования пучка зондирующего излучения и направления его на цель, включающий лазерный излучатель и передающую оптическую систему. Параллельный ему приемный канал для приема отраженного целью сигнала включает фотоприемное устройство и приемный объектив. На выходе передающего канала введен полупрозрачный диффузный рассеиватель, коэффициент рассеяния которого выбран таким, чтобы энергия излучения, отраженного от целей, расположенных в диапазоне дальностей от R0 до R1, и поступающего на чувствительную площадку фотоприемного устройства, соответствовала порогу срабатывания последнего. R0<R1 - заданная минимальная измеряемая дальность. R1 - протяженность теневой зоны, образуемой в диапазоне дальностей, где поля зрения передающего и приемного каналов не перекрываются. Технический результат - уменьшение минимальной измеряемой дальности путем сокращения теневой зоны аппаратной функции. 2 н.п. ф-лы, 3 ил. лазерный дальномер (варианты), патент № 2475702

лазерный дальномер (варианты), патент № 2475702 лазерный дальномер (варианты), патент № 2475702 лазерный дальномер (варианты), патент № 2475702

Формула изобретения

1. Лазерный дальномер, содержащий передающий канал для формирования пучка зондирующего излучения и направления его на цель, включающий лазерный излучатель и передающую оптическую систему, параллельный ему приемный канал для приема отраженного целью сигнала, включающий фотоприемное устройство и приемный объектив, отличающийся тем, что на выходе передающего канала введен полупрозрачный диффузный рассеиватель, коэффициент рассеяния которого выбран таким, чтобы энергия излучения, отраженного от целей, расположенных в диапазоне дальностей от R0 до R1, и поступающего на чувствительную площадку фотоприемного устройства, соответствовала порогу срабатывания последнего, где

R0<R 1 - заданная минимальная измеряемая дальность;

R1 - протяженность теневой зоны, образуемой в диапазоне дальностей, где поля зрения передающего и приемного каналов не перекрываются.

2. Лазерный дальномер, содержащий передающий канал для формирования пучка зондирующего излучения и направления его на цель, включающий лазерный излучатель и передающую оптическую систему, параллельный ему приемный канал для приема отраженного целью сигнала, включающий фотоприемное устройство и приемный объектив, отличающийся тем, что на входе приемного канала введен полупрозрачный диффузный рассеиватель, коэффициент рассеяния которого выбран таким, чтобы энергия излучения, отраженного от целей, расположенных в диапазоне дальностей от R0 до R1, и поступающего на чувствительную площадку фотоприемного устройства, соответствовала порогу срабатывания последнего, где

R0<R1 - заданная минимальная измеряемая дальность;

R1 - протяженность теневой зоны, образуемой в диапазоне дальностей, где поля зрения передающего и приемного каналов не перекрываются.

Описание изобретения к патенту

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии.

Известны лазерные дальномеры, содержащие приемный канал, включающий объектив и фотоприемное устройство, и параллельный ему излучающий канал, включающий оптическую систему и лазерный излучатель [1].

Подобные устройства характеризуются наличием аппаратной функции (геометрического фактора) [2], характеризующей неполное перекрытие полей зрения приемного и передающего каналов. На малых дальностях эти поля не перекрываются, в результате чего образуется теневая зона, в пределах которой измерения дальности невозможны.

Наиболее близким по технической сущности к предлагаемому является техническое решение, направленное на сокращение теневой зоны [3]. Этот лазерный дальномер содержит передающий канал для формирования пучка зондирующего излучения и направления его на цель, параллельный ему приемный канал для приема отраженного целью сигнала, причем передающий канал включает лазерный излучатель и передающую оптическую систему, приемный канал включает фотоприемное устройство и приемный объектив, а поля зрения передающего и приемного каналов перекрываются на дальности R1, соответствующей протяженности теневой зоны, определяемой взаимным расположением передающего и приемного каналов. В этом измерителе дальности расстояние между передающим и приемным каналами сокращено, благодаря чему и обеспечивается укорочение теневой зоны.

Недостатком этого устройства является принципиальная невозможность сокращения теневой зоны до расстояний порядка нескольких сантиметров вследствие наличия элементов конструкции (оправы, бленды, светозащитные шторки и т.п), препятствующих дальнейшему сближению передающего и приемного каналов.

Задачей изобретения является уменьшение минимальной измеряемой дальности за счет сокращения теневой зоны лазерного измерителя дальности.

Поставленная задача решается за счет того, что в известном лазерном дальномере, содержащем передающий канал для формирования пучка зондирующего излучения и направления его на цель, включающий лазерный излучатель и передающую оптическую систему, параллельный ему приемный канал для приема отраженного целью сигнала, включающий фотоприемное устройство и приемный объектив, на выходе передающего канала введен полупрозрачный диффузный рассеиватель, коэффициент рассеяния которого выбран таким, чтобы энергия излучения, отраженного от целей, расположенных в диапазоне дальностей от R0 до R1, и поступающего на чувствительную площадку фотоприемного устройства, соответствовала порогу срабатывания последнего, где

R0 <R1 - заданная минимальная измеряемая дальность;

R1 - протяженность теневой зоны, образуемой в диапазоне дальностей, где поля зрения передающего и приемного каналов не перекрываются.

В другом варианте поставленная задача решается за счет того, что в известном лазерном дальномере, содержащем передающий канал для формирования пучка зондирующего излучения и направления его на цель, включающий лазерный излучатель и передающую оптическую систему, параллельный ему приемный канал для приема отраженного целью сигнала, включающий фотоприемное устройство и приемный объектив, на входе приемногого канала введен полупрозрачный диффузный рассеиватель, коэффициент рассеяния которого выбран таким, чтобы энергия излучения, отраженного от целей, расположенных в диапазоне дальностей от R0 до R1, и поступающего на чувствительную площадку фотоприемного устройства, соответствовала порогу срабатывания последнего, где

R0<R1 - заданная минимальная измеряемая дальность;

R1 - протяженность теневой зоны, образуемой в диапазоне дальностей, где поля зрения передающего и приемного каналов не перекрываются.

На фиг.1 представлена блок-схема лазерного измерителя расстояний. На фиг.2 - его функциональная схема. Фиг.3 поясняет характер аппаратной функции и ее теневой зоны.

Лазерный измеритель дальности (фиг.1) включает три оптических канала. Передающий канал 1 для формирования пучка зондирующего излучения включает лазерный излучатель 2 и передающую оптическую систему 3. Параллельный передающему приемный канал 4 для приема отраженного целью сигнала включает фотоприемное устройство 5 и приемный объектив 6. Третий оптический канал образован полупрозрачным диффузным рассеивателем 7, оптически связанным по выходу с фотоприемным устройством 5 и установленным так, чтобы на свой вход принимать излучение, отраженное от целей на дальностях от R0 до R1.

На фиг.2 показана функциональная схема устройства. На фиг.2а) представлен вариант с полупрозрачным диффузным рассеивателем 7, установленным в передающем канале 1 на выходе передающей оптической системы 3, а на фиг.2б) - в приемном канале 4 на входе приемного объектива 6.

В обоих вариантах полупрозрачный диффузный рассеиватель представляет собой плоскопараллельную пластинку, выполненную из частично рассеивающего материала (например, из молочного или матового стекла).

Устройство работает следующим образом.

При излучении зондирующего импульса лазерным излучателем 2 на выходе передающей оптической системы формируется расходящийся пучок излучения, образующий поле передающего канала (фиг.3). Отраженное целью излучение попадает в поле приемного канала и с помощью приемного объектива 6 фокусируется на чувствительной площадке фотоприемного устройства 5. Дальность до цели R определяют по известной зависимости [1] R=ct/2, где с - скорость света, t - время между моментом излучения зондирующего импульса и моментом срабатывания фотоприемного устройства от излучения, отраженного целью.

В дальней зоне при расстоянии до цели R>R2 поля излучающего и приемного каналов полностью перекрываются, обеспечивая попадание на фотоприемное устройство достаточной для его срабатывания энергии излучения, отраженного целью.

На малых расстояниях до цели поля излучающего и приемного каналов перекрываются не полностью из-за существования аппаратной функции приемного и передающего каналов A1 (R), а в теневой зоне аппаратной функции при R<R1 (фиг.3) они вообще не перекрываются, что делает невозможным измерение при расстояниях до цели R<R 1. Полупрозрачный диффузный рассеиватель 7 в первом варианте рассеивает часть излучаемой энергии, расширяя тем самым поле передающего канала в ближней зоне дальномера и формируя дополнительную аппаратную функцию A0 (R), показанная на фиг.3 пунктиром.

Результирующая аппаратная функция A(R)=A0 (R)+A1(R) предлагаемого устройства обеспечивает возможность измерения дальностей при расстояниях до цели R0<R, причем R0<R1. Введение полупрозрачного диффузного рассеивателя 7 позволяет сократить теневую зону и, соответственно, минимальную измеряемую дальность с 5-30 м до 0,05-0,2 м.

Таким образом, предлагаемый лазерный дальномер обеспечивает решение поставленной задачи - уменьшение минимальной измеряемой дальности путем сокращения теневой зоны аппаратной функции.

Данный вывод подтвержден положительными результатами изготовления и испытаний макетного образца. После корректировки документации по результатам испытаний лазерный дальномер будет запущен в производство.

Источники информации

1. Ермаков Б.А., Возницкий М.В. Получение и обработка информации в импульсных лазерных дальномерах // Оптический журнал № 10 (1993), - с.15-32.

2. С.А.Даничкин. Границы действия геометрического фактора лидара. IV Всесоюзный симпозиум по лазерному зондированию атмосферы. Тезисы докладов. Томск, 1976, с.79-82.

3. Патент США № 4737624 - прототип.

Класс G01C3/08 с использованием детекторов излучения 

устройство калибровки, система измерения расстояния, способ калибровки и программа калибровки -  патент 2529594 (27.09.2014)
приемная линзовая система и оптический дальномер -  патент 2529439 (27.09.2014)
способ измерения линейных перемещений объекта -  патент 2521220 (27.06.2014)
способ обнаружения объектов, измерения скорости, дальности и угловых координат и устройство для его осуществления -  патент 2521203 (27.06.2014)
лазерный дальномер -  патент 2518588 (10.06.2014)
лазерный дальномер -  патент 2516165 (20.05.2014)
телевизионно-лазерный визир-дальномер -  патент 2515766 (20.05.2014)
лазерный монокулярный дальномер -  патент 2515418 (10.05.2014)
способ дистанционного определения экспозиции склона в контрольных точках лавинного очага с использованием лазерного дальномера -  патент 2515083 (10.05.2014)
способ измерения расстояний на цифровой фотокамере -  патент 2485443 (20.06.2013)
Наверх