способ измерения расхода двухфазной трехкомпонентной среды

Классы МПК:G01F1/20 с определением динамических характеристик потока текучей среды
Автор(ы):, , , , , , , ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования Нижегородский государственный технический университет им. Р.Е. Алексеева (НГТУ) (RU)
Приоритеты:
подача заявки:
2011-03-25
публикация патента:

Изобретение относится к нефтедобывающей промышленности, а именно к способам определения дебита нефтяных скважин без предварительной сепарации газа из продукции скважины. Способ измерения расхода двухфазной трехкомпонентной среды включает калибровку акустического доплеровского расходомера, обработку результатов калибровочных работ, синтез математической модели движения двухфазной трехкомпонентной среды, определение интервала расходов жидкости и нефтяного газа, при котором имеет место допустимая погрешность расчета расходов нефти, воды и нефтяного газа. Определяют интервал памяти и шаг дискретизации доплеровского сдвига частоты, при которых на проверочных точках имеет место минимальная величина среднеквадратического отклонения между расчетными и измеренными значениями расходов жидкости. Технический результат - повышение точности измерения расхода двухфазной трехкомпонентной среды за счет выбора оптимальных значений интервала памяти и шага дискретизации доплеровского сдвига частоты.

Формула изобретения

Способ измерения расхода двухфазной трехкомпонентной среды, включающий калибровку многофазного расходомера, обработку результатов калибровочных работ, синтез математической модели движения двухфазной трехкомпонентной среды, определение интервала расходов жидкости и нефтяного газа, при котором имеет место допустимая погрешность расчета расходов нефти, воды и нефтяного газа, отличающийся тем, что в процессе калибровки расходомера и синтеза математической модели движения двухфазной трехкомпонентной среды определяют интервал памяти и шаг дискретизации доплеровского сдвига частоты, при которых на проверочных точках имеет место минимальная величина среднеквадратического отклонения между расчетными и измеренными значениями расходов жидкости.

Описание изобретения к патенту

Изобретение относится к нефтедобывающей промышленности, а именно, к способам определения дебита нефтяных скважин без предварительной сепарации газа из продукции скважины.

Известен способ определения содержания компонентов многофазной среды, включающий зондирование потока акустическими импульсами, регистрацию прошедших через среду импульсов приемником в ограниченном контролируемом объеме потока, образованном парой «источник излучения - приемник», фиксирование времени прохождения импульсов через контролируемый объем и вычисление расхода компонентов на основе закономерностей движения двухфазной трехкомпонентной среды [1]. Однако данный способ приводит к существенным ошибкам при определении расхода двухфазной среды из-за неучета влияния растворенного в нефти и воде нефтяного газа при давлениях и температурах в измеряемом потоке.

Наиболее близким к предлагаемому решению является способ измерения расхода двухфазной трехкомпонентной среды, включающий калибровку многофазного расходомера, обработку результатов калибровочных работ, синтез математической модели движения двухфазной трехкомпонентной среды, определение интервала расходов жидкости и нефтяного газа, при котором имеет место допустимая погрешность расчета расходов нефти, воды и газа [2].

Однако этот способ приводит к ошибкам при определении покомпонентного расхода продукции нефтяной скважины из-за неправильного выбора интервала памяти и шага дискретизации доплеровского сдвига частоты.

Задачей предлагаемого технического решения является разработка такого способа измерения расхода двухфазной трехкомпонентной среды, при реализации которого можно было бы исключить ошибки, обусловленные неправильным выбором интервала памяти и шага дискретизации доплеровского сдвига частоты.

Техническим результатом изобретения является повышение точности измерения расхода двухфазной трехкомпонентной среды за счет выбора оптимальных значений интервала памяти и шага дискретизации доплеровского сдвига частоты.

Поставленный технический результат достигается тем, что в способе измерения расхода двухфазной трехкомпонентной среды, включающем калибровку акустического доплеровского расходомера, обработку результатов калибровочных работ, синтез математической модели движения двухфазной трехкомпонентной среды, определение интервала расходов жидкости и нефтяного газа, при котором имеет место допустимая погрешность расчета расходов нефти, воды и нефтяного газа, определяют интервал памяти и шаг дискретизации доплеровского сдвига частоты, при которых на проверочных точках имеет место минимальная величина среднеквадратического отклонения между расчетными и измеренными значениями расходов жидкости.

Способ реализуется следующим образом. Проводится калибровка акустического доплеровского расходомера. В таблице результатов калибровочных работ расходу жидкости соответствуют показания датчиков обводненности, доплеровского сдвига частоты, газонасыщенности, давления и температуры. На основе теории планирования эксперимента составляют двухуровневый двухфакторный план. Первый фактор - интервал памяти доплеровского сдвига частоты. Второй фактор - шаг дискретизации. В качестве отклика принимается среднеквадратическое отклонение на проверочных точках между расчетными и измеренными расходами жидкости. Оптимизация проводится в три этапа. На первом этапе находят регрессию вида

способ измерения расхода двухфазной трехкомпонентной среды, патент № 2475706 ,

где y - среднеквадратическое отклонение на проверочных точках между расчетными и измеренными расходами жидкости;

х1 - нормированное значение интервала памяти доплеровского сдвига частоты;

х2 - нормированное значение шага дискретизации доплеровского сдвига частоты;

b0, b1, b2, b12 - коэффициенты регрессии.

После определения численных значений коэффициентов регрессии проводят этап движения по градиенту. В качестве начальной точки при составлении программы движения по градиенту берут точку, в которой имеет место наименьшее значение среднеквадратического отклонения.

Шаговое движение к экстремуму продолжают до тех пор, пока не будет достигнута область, которая не может быть описана линейным приближением. Здесь уже сильнее проявляется воздействие факторов, характеризуемых коэффициентами при квадратичных членах полинома.

Для составления плана в этой области используют ортогональное центральное композиционное планирование.

Уравнение регрессии записывают в виде:

способ измерения расхода двухфазной трехкомпонентной среды, патент № 2475706 .

Коэффициенты регрессии определяют исходя из условия ортогональности.

Приравнивают нулю способ измерения расхода двухфазной трехкомпонентной среды, патент № 2475706 и способ измерения расхода двухфазной трехкомпонентной среды, патент № 2475706 решают полученную систему уравнении и находят координаты экстремума в нормированном виде. Переходя к натуральным значениям интервала памяти и шага дискретизации, получают искомые величины, при которых на проверочных точках имеет место минимальная величина среднеквадратического отклонения между расчетными и измеренными значениями расходов жидкости.

Предлагаемый способ позволяет снизить погрешности при измерении покомпонентного расхода продукции нефтяной скважины.

Источники информации

1. Патент РФ № 2138023 «Способ определения расхода компонентов многофазной среды. // Мельников В.И., Дробков В.П. - 1999.09.20.

2. Письмаров, М.Н. Расчет расхода трехкомпонентной среды при калибровке многофазного расходомера. Инновации и актуальные проблемы техники и технологий: Материалы Всероссийской научно-практической конференции молодых ученых в 2-х т. / М.Н.Письмаров, К.Ю.Плесовских; под ред. А.А.Большакова. - Саратов: Саратовский государственный технический университет, 2009. - Т.1. - 360 с. - С.110-112.

Класс G01F1/20 с определением динамических характеристик потока текучей среды

способ измерения расхода двухфазной трехкомпонентной среды -  патент 2527667 (10.09.2014)
способ измерения расхода двухфазной трехкомпонентной среды -  патент 2513661 (20.04.2014)
измеритель расхода -  патент 2495381 (10.10.2013)
способ определения расхода воздуха через воздухозаборник при летных испытаниях прямоточного воздушно-реактивного двигателя гиперзвукового летательного аппарата -  патент 2491512 (27.08.2013)
счетчик газа -  патент 2488780 (27.07.2013)
способ измерения расхода газа -  патент 2483282 (27.05.2013)
способ измерения расхода двухфазной трехкомпонентной среды -  патент 2476827 (27.02.2013)
способ измерения расхода двухфазной трехкомпонентной среды -  патент 2466356 (10.11.2012)
способ измерения расхода воды -  патент 2457441 (27.07.2012)
струйный автогенераторный расходомер-счетчик -  патент 2422776 (27.06.2011)
Наверх