способ обработки детали с гальваническим покрытием

Классы МПК:C25D5/50 термообработкой
Автор(ы):, , , , , , , , , , , , , , , ,
Патентообладатель(и):Общество с ограниченной ответственностью "Технологические покрытия" (RU)
Приоритеты:
подача заявки:
2010-11-17
публикация патента:

Изобретение относится к технологии обработки деталей с гальваническими покрытиями для повышения износостойкости покрытий. Способ обработки детали с гальваническим покрытием включает покрытие детали радикалообразующим веществом и последующее обезводороживание покрытия. Обезводораживание осуществляют с одновременным диффузионным молекулярным армированием путем размещения детали в печи, нагрева до температуры начала термодеструкции радикалобразующего вещества и выдержки при данной температуре до завершения процесса обезводораживания покрытия. Технический результат заключается в повышении износостойкости гальванических покрытий, подвергаемых обезводороживанию, без дополнительных затрат времени на упрочняющую обработку деталей. 1 пр.

Формула изобретения

Способ обработки детали с гальваническим покрытием, включающий покрытие детали слоем радикалообразующего вещества и последующее обезводороживание гальванического покрытия, отличающийся тем, что обезводороживание гальванического покрытия осуществляют с одновременным диффузионным молекулярным армированием путем нагрева помещенной в печь детали до температуры начала термодеструкции радикалобразующего вещества и выдержки при данной температуре до завершения процесса обезводораживания покрытия.

Описание изобретения к патенту

Изобретение относится к технологии обработки деталей с гальваническими покрытиями и может быть использовано для повышения износостойкости покрытий.

Известен стандартный способ обработки гальванических покрытий, являющийся аналогом заявляемого изобретения, заключающийся в том, что после нанесения покрытия детали помещают в сушильный шкаф и прогревают их в воздушной среде при температурах 140-200°С в течение двух-трех часов. Конкретные технологические режимы, рекомендованные для процесса обезводороживания различных покрытий, прописаны в стандарте [1]. Целью обезводороживания является уменьшение хрупкости материалов покрытия и основы за счет удаления водорода, выделившегося на катоде и диффундировавшего в металл в процессе осаждения покрытия. Недостатками данного способа являются большая длительность обработки и снижение твердости покрытия.

Известен способ повышения прочности поверхностных слоев путем диффузионного молекулярного армирования (ДМА) [2], заключающийся в том, что обрабатываемую поверхность сначала активируют путем холодной пластической деформации, а затем производят химико-термическую обработку. Пластическую деформацию поверхности осуществляют при непрерывной подаче радикалообразующего вещества в зону деформации до достижения заданной величины наклепа материала поверхностного слоя. Химико-термическая обработка заключается в нагреве детали до температуры химической модификации радикалообразующего вещества, при которой начинается деструкция его молекул, и выдержке в печи при данной температуре при непрерывной подаче радикалообразующего вещества в течение времени, необходимого для предельного насыщения радикалами упрочняемого поверхностного слоя. В качестве радикалообразующих веществ предложено использовать минеральные масла. Для уменьшения окисления радикалообразующего вещества предложено добавлять в него антиокислительные присадки. Обработанные таким способом поверхностные слои характеризуются повышенной твердостью, износостойкостью и коррозионной устойчивостью.

В качестве прототипа выбран способ обработки детали с гальваническим покрытием, включающий покрытие детали радикалообразующим веществом, в частности веретенным маслом, бензином, спиртом, и его последующее обезводороживание [3].

Недостатком известного способа и аналога является длительность обработки, а также необходимость выполнения предварительной активации поверхности.

Технический результат настоящего изобретения заключается в повышении износостойкости гальванических покрытий, подвергаемых обезводороживанию, без дополнительных затрат времени на упрочняющую обработку деталей.

Технический результат достигается тем, что способ обработки детали с гальваническим покрытием включает покрытие детали радикалообразующим веществом и последующее обезводороживание покрытия, при этом обезводороживание покрытия осуществляют с его одновременным диффузионным молекулярным армированием путем размещения детали в печи, нагрева до температуры начала термодеструкции радикалобразующего вещества и выдержки при данной температуре до завершения процесса обезводораживания покрытия.

Поставленная задача решается за счет того, что предлагается совместить операции обезводороживания и упрочнения покрытий методом ДМА. Возможность совмещения вышеописанных способов обработки деталей с покрытиями (обезводороживания и ДМА) обусловлена тем, что режимы обработки деталей (температура нагрева, длительность) при выполнении обоих способов совпадают, а целесообразность этого совмещения обусловлена отсутствием необходимости дополнительных затрат времени на упрочняющую обработку покрытий. Так, например, температуры, указанные в ГОСТе [1], при которых осуществляется обезводораживание поверхностей (150способ обработки детали с гальваническим покрытием, патент № 2476626 250°С), охватывают диапазон температур термодеструкции радикалообразующих веществ (для минеральных масел (200способ обработки детали с гальваническим покрытием, патент № 2476626 250°С). А длительность обезводороживания (несколько часов), указанная в ГОСТе [1], несколько превышает длительность, необходимую для процесса ДМА (наиболее интенсивно армирование протекает на протяжении около 1 часа). Поэтому температуру нагрева при заявленной обработке выбирают как температуру начала термодеструкции радикалообразующего вещества, а длительность обработки выбирают как время, необходимое для завершения процесса обезводороживания покрытия. При этом для упрочнения гальванических покрытий не требуется предварительной механической обработки поверхности, цель которой - активировать поверхность за счет образования на поверхности дефектов (ядер дислокации, микротрещин), по которым радикалы могут проникать вглубь поверхности, так как в процессе нанесения гальванических покрытий в них образуется большое количество дислокации, микротрещин и пор, которые могут служить каналами проникновения радикалов внутрь покрытия.

Заявленный способ ресурсоповышающей обработки деталей с гальваническими покрытиями осуществляется по следующим этапам. После нанесения гальванического покрытия детали обезжиривают и покрывают слоем радикалообразующего вещества, например минерального масла, или погружают в ванну с радикалообразующим веществом. Помещают детали в печь или сушильный шкаф. Нагревают детали до температуры начала термодеструкции радикалообразующего вещества и выдерживают детали при данной температуре в течение времени, необходимого для завершения процесса обезводороживания покрытий. В результате описанного способа повышается износостойкость и коррозионная стойкость материала гальванических покрытий.

Пример реализации.

Партию образцов из бериллиевой бронзы БрБ2 с нанесенным серебряным покрытием толщиной 20 мкм (с медным подслоем, толщиной 1 мкм) в количестве 10 шт. разделили на две равные части. Первую часть образцов покрыли (окунанием) слоем минерального масла И-12А. Затем образцы поместили в сушильный шкаф и нагрели до температуры 200°С и выдержали при данной температуре 2 часа. Вторую часть образцов обработали аналогичным образом, но без окунаний в минеральное масло. После чего провели испытания образцов на изнашивания на торцевом трибометре (схема испытаний «кольцо-плоскость», давление 20 МПа, частота вращения кольца - 600 мин, смазка - «Циатим-201», длительность испытаний - 1 час). После завершения испытаний на изнашивание с помощью профилографа «Абрис-ПМ7» определили линейный износ серебряных покрытий для каждого образца, затем полученные результаты усреднили для каждой из частей. Установлено, что средняя скорость изнашивания серебряного покрытия первой части образцов составляет 6 мкм/час, а второй части образцов - 10 мкм/час, что подтверждает заявленный эффект.

Используемая литература

1. ГОСТ 9.305-84. Покрытия металлические и неметаллические неорганические. Операции технологических процессов получения покрытий.

2. Патент РФ № 2198954. Способ упрочнения поверхностей деталей/ Громаковский Д.Г., Ковшов А.Г., Малышев В.П., Ибатуллин И.Д., Дынников А.В., Шигин СВ., Анучин Ю.Е., Маруженков К.И. Опубл. 20.02.2003.

3. Авторское свидетельство СССР № 134954, опубл. 01.01.1961.

Класс C25D5/50 термообработкой

способ получения пластичной структуры поверхностного слоя на переднем выступе ствольной коробки стрелкового оружия -  патент 2524268 (27.07.2014)
способ нанесения композиционных электрохимических покрытий -  патент 2482225 (20.05.2013)
способ нанесения комбинированного защитного покрытия на стальные детали -  патент 2427671 (27.08.2011)
способ получения прочносцепленных покрытий на основе никеля на металлических деталях -  патент 2389829 (20.05.2010)
способ получения гальванического покрытия сплавами на основе никеля на хромсодержащих материалах -  патент 2355827 (20.05.2009)
способ получения диффузионных покрытий на стали -  патент 2223350 (10.02.2004)
способ получения электроосажденных металлов с повышенными прочностными и пластическими свойствами -  патент 2183697 (20.06.2002)
способ изготовления деталей с твердым электрохимическим хромовым покрытием -  патент 2180022 (27.02.2002)
способ получения термоупрочняемых хромовых покрытий -  патент 2147630 (20.04.2000)
способ обработки изделий из алюминия и его сплавов (варианты) -  патент 2096533 (20.11.1997)
Наверх