способ определения фильтрационных параметров пласта

Классы МПК:E21B47/10 определение места оттока, притока или колебаний жидкости 
E21B49/00 Исследование структуры стенок скважины, исследование геологического строения пластов; способы или устройства для получения проб грунта или скважинной жидкости, специально предназначенные для бурения пород
G01N15/00 Исследование свойств частиц; определение проницаемости, пористости или площади поверхности пористых материалов
Автор(ы):, , , , ,
Патентообладатель(и):Общество с ограниченной ответственностью "Газпромнефть Научно-Технический Центр" (ООО "Газпромнефть НТЦ") (RU)
Приоритеты:
подача заявки:
2011-09-15
публикация патента:

Изобретение относится технологиям нефтедобычи, а именно к способам проведения, интерпретации и анализа результатов гидродинамических исследований эксплуатационных скважин, оборудованных электрическими центробежными насосами. Техническим результатом является повышение достоверности определения мест снижения скин-фактора для вскрытого ГРП малопроницаемого пласта. Способ включает следующую последовательность действий: после непрерывного цикла работы скважины в течение, по меньшей мере, 30 суток регистрируют длительную, не менее 3 суток, кривую восстановления уровня, по которой оценивают текущую продуктивность пласта, затем на основе сравнения текущей продуктивности с начальной определяют, насколько изменился скин-фактор. Кроме того, с целью получения непрерывных кривых изменения во времени давления и скин-фактора проводят повторную интерпретацию кривых изменения давления и расхода в течение всего времени наблюдений с момента пуска скважины. 2 ил.

способ определения фильтрационных параметров пласта, патент № 2476669 способ определения фильтрационных параметров пласта, патент № 2476669

Формула изобретения

Способ определения фильтрационных параметров пласта, включающий долговременный мониторинг изменения во времени давления и расхода на забое, начиная с момента запуска скважины в эксплуатацию, отличающийся тем, что после непрерывного цикла работы скважины в течение, по меньшей мере, 30 сут регистрируют длительную, не менее 3 сут, кривую восстановления уровня, по которой оценивают текущую продуктивность пласта, затем проводят повторную интерпретацию кривых изменения давления и расхода в течение всего времени наблюдений с момента пуска скважины и на основе сравнения текущей продуктивности с начальной определяют, насколько изменился скин-фактор.

Описание изобретения к патенту

Изобретение относится технологиям нефтедобычи, а именно к способам проведения, интерпретации и анализа результатов гидродинамических исследований эксплуатационных скважин (ГДИС), оборудованных электрическими центробежными насосами (ЭЦН).

Известны способы ГДИС (например, заявка на изобретение № 2008118158/03, 02.10.2006), предполагающие регистрацию кривой изменения давления в скважине в процессе одного или нескольких циклов ее запуска, остановки или циклической смены режимов работы в соответствии с которыми по результатам интерпретации ГДИС определяют фильтрационные параметры пласта, характеристики совершенства вскрытия, прежде всего скин-фактор, и пластовое давление.

Однако эти способы имеют существенный недостаток: очень низкую точность при эксплуатации малопроницаемых пластов, вскрытых трещинами гидроразрыва пласта (ГРП).

Этот недостаток обусловлен тем, что для формирования в скважине псевдорадиального режима течения, необходимого для достоверной оценки фильтрационно-емкостных свойств, требуется большое время работы на стабильном режиме отбора или простоя скважины. Это не всегда технически осуществимо вследствие низкой нестабильной производительности пласта и, кроме того, нецелесообразно по экономическим соображениям.

Более приемлемой в подобных условиях является технология определения фильтрационных параметров, начального и текущих значений скин-фактора и пластового давления, состоящая в долговременном мониторинге изменения во времени забойного давления и расхода на забое, начиная с момента запуска скважины в эксплуатацию (например, US Patent № 6101447, 08.08.2000).

По темпу падения давления и расхода в течение суток после запуска скважины в эксплуатацию судят о фильтрационных свойствах пласта и начальном значении скин-фактора, а по характеру изменения перечисленных параметров при длительной (более 30 суток) эксплуатации скважины - об изменении во времени скин-фактора (при независимо полученных данных о текущем пластовом давлении).

Однако у данной технологии есть недостаток. Точность определения характера изменения во времени скин-фактора при отсутствии данных о текущем пластовом давлении очень низка. Данный недостаток обусловлен тем, что изменение во времени скин-фактора и пластового давления практически одинаково влияют на результаты измерений в скважине.

Это не позволяет по ГДИС достоверно выявлять скважины, где произошло снижение скин-фактора и принимать оперативное обоснованное решение по интенсификации притока (например, о проведении повторных ГРП), что приводит к потерям в добыче нефти.

Задачей изобретения является повышение достоверности определения характера снижения скин-фактора во времени для вскрытого ГРП малопроницаемого пласта.

Для этого в известной технологии определения фильтрационных параметров, скин-фактора и пластового давления (US Patent № 6101447), состоящей в долговременном мониторинге изменения во времени забойного давления и расхода на забое, начиная с момента запуска скважины в эксплуатацию, после непрерывного цикла работы скважины в течение, по меньшей мере, 30 суток регистрируют длительную (не менее 3 суток) кривую восстановления уровня. По данной кривой оценивают текущую продуктивность пласта. Затем на основе сравнения текущей продуктивности способ определения фильтрационных параметров пласта, патент № 2476669 с начальной способ определения фильтрационных параметров пласта, патент № 2476669 определяют, насколько изменился скин-фактор.

Для расчета текущего скин-фактора SТЕК (в условиях, когда состав продукции и фазовая проницаемость пласта практически не меняются во времени) используют соотношение:

способ определения фильтрационных параметров пласта, патент № 2476669 ,

где SНAЧ - начальный скин-фактор, RКП радиус контура питания, Rc радиус скважины.

После этого проводят повторную интерпретацию кривых изменения давления и расхода в течение всего времени наблюдений (с момента пуска скважины). Результатом расчетов, выполняемых в процессе интерпретации, являются непрерывные кривые изменения во времени пластового давления и скин-фактора.

Таким образом, получают достоверные данные по каждой скважине об ухудшении скин-фактора во времени при отсутствии информации о текущем пластовом давлении.

Пример практической реализации способа представлен на фиг.1 и 2.

На фиг.1 приведены результаты долговременного мониторинга давления Р, расхода на забое Q и накопленной добычи Qспособ определения фильтрационных параметров пласта, патент № 2476669 , начиная с момента запуска скважины (КСД1 ) в эксплуатацию продолжительностью 60 суток.

На графике показаны следующие линии:

1 - измеренный расход;

2 - накопленная добыча;

3 - измеренное давление;

4 - результаты воспроизведения кривой изменения расхода и накопленной добычи при интерпретации в течение всего времени наблюдений (с момента пуска скважины);

5 - рассчитанная кривая изменения пластового давления во времени.

На фиг.2 приведены результаты измерения давления в цикле КВУ в диагностическом Log-Log масштабе.

На графике показаны следующие линии:

1 - давление;

2 - логарифмическая производная;

R 0 - положение асимптоты к производной в интервале радиального течения.

Точками представлены результаты измерения, тонкими сплошными линиями - результаты воспроизведения названных параметров при интерпретации.

По результатам исследований в цикле была определена проницаемость пласта (0.5 мД) и первоначальный интегральный скин-фактор (-5.6), а также начальная продуктивность (способ определения фильтрационных параметров пласта, патент № 2476669 =1,13 м3/сут МПа).

Оценить, как изменился скин-фактор во времени по данному циклу исследований невозможно, поскольку не известен характер измерения во времени текущего пластового давления на дренируемом скважинном участке залежи (размеры участка).

Поэтому после непрерывного цикла работы скважины была зарегистрирована длительная (10 суток) кривая восстановления уровня (цикл КВУ на фиг.1). Затем скважина опять была запущена в режиме технологического отбора (цикл КСД 2 на фиг.1).

Оценить текущий скин-фактор по результатам данного исследования также невозможно, поскольку длительность КВУ в данных условиях (низкая проницаемость пласта, наличие трещины гидроразрыва) недостаточна для формирования радиального режима течения в пласте (фиг 2).

Однако текущая продуктивность определена с приемлемой точностью. Она составляет способ определения фильтрационных параметров пласта, патент № 2476669 =1.05 м3/сут МПа.

Далее, в соответствии с формулой (1) было рассчитано значение текущего скин-фактора, которое составило -5.5.

И, наконец, проведя повторную интерпретацию кривых изменения давления и расхода в течение всего времени наблюдений с момента пуска скважины, были получены непрерывные кривые изменения во времени пластового давления и скин-фактора (фиг.1).

К моменту окончания исследования пластовое давление упало с 20.0 до 16.7 МПа. При этом несколько возрос скин-фактор, что говорит о том, что началось загрязнение трещины ГРП.

Класс E21B47/10 определение места оттока, притока или колебаний жидкости 

способ исследования скважины -  патент 2527960 (10.09.2014)
способ гидродинамических исследований газонасыщенных пластов без выпуска газа на поверхность -  патент 2527089 (27.08.2014)
способ контроля за процессом обводнения газовой скважины -  патент 2526965 (27.08.2014)
способ определения герметичности подземных хранилищ газа -  патент 2526434 (20.08.2014)
способ идентификации скважины с измененным массовым расходом жидкости куста нефтяных скважин -  патент 2521623 (10.07.2014)
способ определения обводненности продукции нефтедобывающей скважины -  патент 2520251 (20.06.2014)
устройство для определения интервалов водопритока и их изоляции в открытых стволах многозабойных горизонтальных скважин -  патент 2514009 (27.04.2014)
способ исследования многозабойной горизонтальной скважины -  патент 2513961 (20.04.2014)
способ определения остаточного содержания газа в жидкости -  патент 2513892 (20.04.2014)
устройство для измерения дебита скважин -  патент 2513891 (20.04.2014)

Класс E21B49/00 Исследование структуры стенок скважины, исследование геологического строения пластов; способы или устройства для получения проб грунта или скважинной жидкости, специально предназначенные для бурения пород

способ гидродинамических исследований газонасыщенных пластов без выпуска газа на поверхность -  патент 2527089 (27.08.2014)
способ определения совместимости жидких производственных отходов с пластовой водой -  патент 2525560 (20.08.2014)
способ прогнозирования изменения свойств призабойной зоны пласта под воздействием бурового раствора -  патент 2525093 (10.08.2014)
способ определения застойных и слабодренируемых нефтяных зон в низкопроницаемых коллекторах -  патент 2524719 (10.08.2014)
способ и устройство для увеличения добычи в месторождении -  патент 2524367 (27.07.2014)
скважинные системы датчиков и соответствующие способы -  патент 2524100 (27.07.2014)
способ комплексной оценки состояния призабойной зоны пласта -  патент 2522579 (20.07.2014)
способ контроля за разработкой нефтяного месторождения -  патент 2522494 (20.07.2014)
способ определения обводненности продукции нефтедобывающей скважины -  патент 2520251 (20.06.2014)
способ определения нефтенасыщенных пластов -  патент 2517730 (27.05.2014)

Класс G01N15/00 Исследование свойств частиц; определение проницаемости, пористости или площади поверхности пористых материалов

способ автоматического контроля крупности дробленой руды в потоке -  патент 2529636 (27.09.2014)
способ измерения продольного и сдвигового импендансов жидкостей -  патент 2529634 (27.09.2014)
способ энергетической оценки воздействия на почву рабочих органов почвообрабатывающих машин и орудий -  патент 2528551 (20.09.2014)
способ определения свойств дисперсных материалов при взаимодействии с водой и поверхностно-активными веществами -  патент 2527702 (10.09.2014)
способ измерения пористости частиц сыпучих материалов -  патент 2527656 (10.09.2014)
способ и устройство для оптического измерения распределения размеров и концентраций дисперсных частиц в жидкостях и газах с использованием одноэлементных и матричных фотоприемников лазерного излучения -  патент 2525605 (20.08.2014)
способ определения совместимости жидких производственных отходов с пластовой водой -  патент 2525560 (20.08.2014)
способ прогнозирования изменения свойств призабойной зоны пласта под воздействием бурового раствора -  патент 2525093 (10.08.2014)
способ замеров параметров выхлопных газов двс -  патент 2525051 (10.08.2014)
способ определения застойных и слабодренируемых нефтяных зон в низкопроницаемых коллекторах -  патент 2524719 (10.08.2014)
Наверх