способ получения текстурированных покрытий с анизотропной коэрцитивной силой на основе магнитных соединений

Классы МПК:G11B5/84 способы или устройства для изготовления магнитных носителей информации
H01F1/01 содержащие неорганические материалы
C01G49/00 Соединения железа
C01F11/00 Соединения кальция, стронция или бария
Автор(ы):,
Патентообладатель(и):Учреждение Российской академии наук Институт металлургии и материаловедения им. А.А. Байкова РАН (RU)
Приоритеты:
подача заявки:
2011-08-30
публикация патента:

Изобретение может быть использовано при изготовлении устройств магнитной записи высокой плотности и постоянных магнитов. Способ получения текстурированных покрытий с анизотропной коэрцитивной силой на основе магнитных соединений включает синтез магнитных композиционных порошков. Для этого магнитные порошки гексаферрита стронция помещают равномерно в канавку на поверхности деформируемых металлов и сплавов, проводят подпрессовку. Затем осуществляют прокатку с защитной прослойкой из фольги титана между порошком и прокатными валками в интервале температур от 20 до 600°С, с последующим отжигом при температурах 800-850°С продолжительностью не менее 2,5 часов. Изобретение позволяет повысить коэрцитивную силу и степень ее анизотропности в магнитных покрытиях на основе гексаферрита стронция. 2 табл.

Формула изобретения

Способ получения текстурированных покрытий с анизотропной коэрцитивной силой на основе магнитных соединений, включающий синтез магнитных композиционных порошков, отличающийся тем, что магнитные порошки гексаферрита стронция помещают равномерно в канавку на поверхности деформируемых металлов и сплавов, проводят подпрессовку, затем прокатку с защитной прослойкой из фольги титана между порошком и прокатными валками в интервале температур от 20 до 600°С, с последующим отжигом при температуре 800-850°С продолжительностью не менее 2,5 ч.

Описание изобретения к патенту

Изобретение относится к разработке металлургических способов изготовления магнитных материалов, а именно к использованию технологии прессования и прокатки для текстурирования однодоменных частиц магнитотвердых материалов на основе гексаферрита стронция, в том числе легированного различными элементами. Получаемый материал может быть использован в виде покрытий на металлических и неметаллических подложках для применения в устройствах магнитной записи высокой плотности и постоянных магнитах.

Гексаферрит стронция и материалы на его основе являются распространенными магнитотвердыми материалами. Наиболее известным способом их получения является метод термической кристаллизации стеклообразных предшественников в системах ВаО-Fe2O3-B2O 3 и Sr-Fe2O32О3 . Указанный метод описан в работе [Shirk B.T., Buessem W.R., Journal of American Ceramic Society, 1970, 53(4), 192-196] и патентах [US 3630667 Production of Barium Ferrite и US 3716630 Hard Magnetic Ferrites]. При этом величина коэрцитивной силы достигает 5350 и 5800 Э для гексаферритов бария и стронция соответственно. Недостатком этого метода является принципиальная невозможность получения текстурированного материала с анизотропной коэрцитивной силой и достижения более высоких ее значений.

В качестве прототипа изобретения выбран способ, описанный в работах [Д.Д.Зайцев, П.Е.Казин, А.В.Гаршев, Ю.Д.Третьяков, М.Янзен. Неорган.материалы, 2004, 40,1009-1013), D.D.Zaitsev, S.E.Kushnir, P.E.Kazin,, Yu.D.Tretyakov, M.Jansen (Journal of Magnetism and Magnetic Materials. 2006, 301, 489-494). Он предусматривает использование стекол в системе SrO-Fe2O3-Al2O3-B 2O3 для получения ультрадисперсного гексаферрита стронция. Недостатком прототипа, как и в предыдущем случае, является то, что он не позволяет получать магнитотвердый материал с анизотропной коэрцитивной силой в поперечном и продольном направлениях магнитного поля.

Задача, на решение которой направлено настоящее изобретение, заключается в создании способа изготовления магнитных текстурированных материалов с анизотропной коэрцитивной силой вдоль направления прокатки магнитного покрытия и поперек.

Техническим результатом изобретения является повышение коэрцитивной силы и степени ее анизотропности в магнитных покрытиях на основе гексаферрита стронция.

Технический результат достигается тем, что в способе получения текстурированных покрытий с анизотропной коэрцитивной силой на основе магнитных соединений, включающем синтез магнитных композиционных порошков, согласно изобретению магнитные порошки гексаферрита стронция помещают равномерно в канавку на поверхности деформируемых металлов и сплавов, проводят подпрессовку, затем прокатку с защитной прослойкой из фольги титана между порошком и прокатными валками в интервале температур от 20-600°С, с последующим отжигом при температурах 800-850°С продолжительностью не менее 2,5-х часов.

Поставленная задача решена благодаря тому, что обработанные методом прессования и прокатки материалы в виде покрытий или чешуек содержат однодоменные магнитные частицы, сориентированные в немагнитной матрице вдоль направления прокатки.

На первом этапе проводится синтез высококоэрцитивных частиц гексаферрита стронция по технологии кристаллизации стекол в системе SrO-Fe2 O3-Al2O32О 3. Для успешного проведения синтеза необходимо соблюдение основного условия: - исходный состав стекла должен быть таковым, чтобы в конечном продукте гексаферрит стронция был доминирующей железосодержащей фазой (т.е. предполагается высокий выход желаемого продукта) и иметь тенденцию образовывать аморфное стекло при быстром охлаждении (т.е. должен содержать достаточное количество стеклообразующих компонентов). Этим условиям удовлетворяют составы вида SrFe12O16+n·SrmB 2O3+m, где 6способ получения текстурированных покрытий с анизотропной коэрцитивной   силой на основе магнитных соединений, патент № 2476939 nспособ получения текстурированных покрытий с анизотропной коэрцитивной   силой на основе магнитных соединений, патент № 2476939 12, 1способ получения текстурированных покрытий с анизотропной коэрцитивной   силой на основе магнитных соединений, патент № 2476939 mспособ получения текстурированных покрытий с анизотропной коэрцитивной   силой на основе магнитных соединений, патент № 2476939 2. Кроме того, для модификации свойств стекол в указанные композиции могут быть внесены дополнительные добавки оксидов SrO, Al2O3, В2О3, Na2O и K2O (до 20 вес.%).

Для приготовления стекол используются соединения стронция, железа, алюминия, бора, натрия и калия, при термической обработке которых образуются соответствующие оксиды. Исходные вещества берутся в необходимых молярных соотношениях. Смесь исходных веществ нагревается до температур 1150-1600°С, при этом происходит их разложение и плавление. Полученный расплав при быстром охлаждении закаливается для образования стекла. Стекло представляет собой плотный аморфный материал.

Ультрадисперсные порошки гексаферрита стронция получают при растворении остальных фаз стеклокерамики, например, в растворах соляной или уксусной кислот. Частицы, формирующие порошки, по форме и размерам не отличаются от частиц в исходной стеклокерамике. Коэрцитивная сила порошков составляет не менее 5000 Э (400 кА/м), намагниченность насыщения порошков не менее 40 э.м.е./г (40 А·м2/кг).

На втором этапе проводится термообработка для кристаллизации частиц гексаферрита; размер и форма частиц зависят от условий термообработки. Высококоэрцитивные частицы SrFe12O19 формируются в процессе термообработки стекол при температурах 850-1000°С продолжительностью не менее 5-10 мин.

Частицы SrFe12O 19 имеют форму гексагональных пластин с толщиной 50-150 нм и диаметром 200-500 нм (отношение толщина/диаметр находится в пределах 1/5-1/3). Степень замещения железа на алюминий составляет х=0.5-2.0. Коэрцитивная сила стеклокерамики составляет не менее 5000Э (400 кА/м), намагниченность насыщения не менее 12 э.м.е./г (12А·м2/кг).

На третьем этапе порошок, получаемый растворением немагнитной матрицы в разбавленном растворе соляной кислоты, размещают в виде равномерного слоя в канавке глубиной 1,5-2,0 мм на поверхности подложек из различных деформируемых металлов или сплавов (олова, алюминия, меди, титана и др.).

На четвертом этапе порошок сверху накрывают фольгой из титана и образец подвергают прессованию при температурах в интервале от 20 до 600°С под давлением от 5×10 3 кГ/см2 до 104 кГ/см2 в течение 5-10 мин. При этом наблюдается текстурирование частиц гексаферрита, дальнейшее утонение и текстурирование происходит в процессе прокатки. На пятом этапе образец подвергают холодной прокатке на двухвалковом стане, между верхним валком и магнитным покрытием во избежание прилипания порошка к поверхности валка прокладывается фольга титана с высокой чистотой поверхности, повышение степени чистоты поверхности фольги приводит к формированию высокочистой и высокоплотной структуры поверхности магнитного покрытия. В зависимости от степени деформации и количества проходов зависит толщина прокатанного покрытия (от 200-300 мкм до 10-20 мкм и менее).

На шестом этапе с целью спекания частиц проводится термообработка покрытия, при этом в зависимости от температуры и продолжительности отжига и температурного градиента возможен контролируемый рост магнитных частиц и дальнейшее текстурирование, что и приводит к усилению анизотропии коэрцитивной силы.

Для получения отдельных чешуек из гексаферрита стронция необходимо кратковременное оплавление подложки, например, в случаях подложек из олова, алюминия, а также кратковременный нагрев в случае меди, титана. Сравнение магнитных характеристик текстурированных материалов с исходными порошками композитов (номинальные составы - 1-й серии (SrFe12O19+8 SrB2O4 ) и 2-й серии (SrFe12O19+12Sr2 B2O5) и серия 3 (SrFe11AlO 19+8 SrB2O4) после прокатки на подложках (из меди и алюминия) и отжига при температурах (800, 850°С) в течение 2,5 часов представлено в таблице 1.

способ получения текстурированных покрытий с анизотропной коэрцитивной   силой на основе магнитных соединений, патент № 2476939

Степень текстурирования оценена при помощи полнопрофильного анализа рентгенограмм методом Ритфельда с установлением параметра преимущественной ориентации образца. Установлено, что во всех прокатанных покрытиях частицы порошка имеют преимущественную ориентацию в направлении с и перпендикулярно поверхности покрытия, что соответствует орентации пластинчатых кристаллов вдоль плосуости прокати. Степень текстурирования покрытий из порошков гексаферрита стронция, полученных на подложках из алюмия и меди, представлена в таблице 2.

Таблица 2
Степень тескстурирования покрытий из гексаферрита стронция, полученных прокаткой на подложках из алюминия и меди
ПодложкаТемпература обработки, C° Степень текстурирования
Алюминий850 0,73
Медь850 0,73

Класс G11B5/84 способы или устройства для изготовления магнитных носителей информации

среда для магнитной записи на магнитных наноструктурах -  патент 2391717 (10.06.2010)
способ формирования магнитного носителя с паттернированной структурой для цифровой записи -  патент 2383944 (10.03.2010)
материал металлопленочного резистивного слоя и способ получения резистивного слоя на его основе -  патент 2280905 (27.07.2006)
способ получения многослойного магнитного носителя для цифровой записи -  патент 2227938 (27.04.2004)
устройство для обработки магнитных лент -  патент 2189641 (20.09.2002)
способ изготовления магнитного носителя -  патент 2169399 (20.06.2001)
способ изготовления магнитного носителя -  патент 2169398 (20.06.2001)
способ получения магнитомягких термостойких аморфных конденсатов 3d-металлов -  патент 2122243 (20.11.1998)
способ изготовления магнитного носителя -  патент 2104592 (10.02.1998)
способ получения тонкой дисперсной магнитной пленки на полимерной подложке -  патент 2096835 (20.11.1997)

Класс H01F1/01 содержащие неорганические материалы

Класс C01G49/00 Соединения железа

Класс C01F11/00 Соединения кальция, стронция или бария

способ улучшения непрозрачности -  патент 2527219 (27.08.2014)
способ получения карбоната кальция с подвергнутой реакционной обработке поверхностью, использующий слабую кислоту, конечные продукты и их применение -  патент 2520452 (27.06.2014)
способ получения осажденного карбоната кальция -  патент 2520437 (27.06.2014)
способ получения карбоната кальция с подвергнутой реакционной обработке поверхностью и его применение -  патент 2519037 (10.06.2014)
установка для получения карбида кальция -  патент 2516541 (20.05.2014)
фотокаталитические композиционные материалы, содержащие титан и известняк без диоксида титана -  патент 2516536 (20.05.2014)
способ получения оптической керамики -  патент 2515642 (20.05.2014)
охладитель -  патент 2515289 (10.05.2014)
композиции для доведения до кондиции грязевых отходов -  патент 2514781 (10.05.2014)
гексаферрит стронция как катодный материал для литиевого аккумулятора -  патент 2510550 (27.03.2014)
Наверх