светочувствительный полимерный материал с флуоресцентным считыванием информации
Классы МПК: | C09K11/06 содержащие органические люминесцентные вещества G03C1/73 содержащие органические соединения G11B7/246 с красителями |
Автор(ы): | Травень Валерий Федорович (RU), Долотов Сергей Михайлович (RU), Иванов Иван Викторович (RU), Барачевский Валерий Александрович (RU), Кобелева Ольга Игоревна (RU), Валова Татьяна Михайловна (RU), Платонова Ирина Вячеславовна (RU), Айт Антон Оскарович (RU) |
Патентообладатель(и): | Государственное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) (RU) |
Приоритеты: |
подача заявки:
2011-03-17 публикация патента:
27.03.2013 |
Изобретение относится к области материалов для оптической записи информации, в частности материалов для архивной записи информации, основанной на фотоиндуцированной флуоресценции, с возможностью использования в устройствах оптической памяти, включая трехмерные системы оптической памяти для Read Only Memory (ROM). Предлагаемый светочувствительный полимерный материал с флуоресцентным считыванием информации включает прекурсор органического флуоресцирующего соединения (ПФС) в виде раствора в оптически прозрачном сополимере метилметакрилата (ММА) с 2,2,2-трихлорэтилметакрилатом (ТХЭМА) или 2,2,2-трибромэтилметакрилатом (ТБЭМА). Содержание ПФС в растворе 0,1-2 мас.%. Образование окрашенной флуоресцирующей формы ПФС достигается под действием излучения в диапазоне от 250 до 330 нм. Для расширения спектрального диапазона излучения до 500 нм материал может дополнительно содержать пиразолины, например 1,3,5-трифенилпиразолин. Предложенный светочувствительный материал обладает незначительной интенсивностью окраски и флуоресценции до облучения, низкой диффузионной подвижностью компонентов, сенсибилизирующих флуоресценцию ПФС, а также позволяет расширить диапазон излучения, пригодного для перевода ПФС в окрашенную флуоресцирующую форму в длинноволновую область до 500 нм. 3 з.п. ф-лы, 6 ил., 2 табл., 7 пр.
Формула изобретения
1. Светочувствительный полимерный материал с флуоресцентным считыванием информации, включающий прекурсор органического флуоресцирующего соединения и отличающийся тем, что прекурсор органического флуоресцирующего соединения растворен в оптически прозрачном сополимере метилметакрилата (ММА) с 2,2,2-трихлорэтилметакрилатом (ТХЭМА) или 2,2,2-трибромэтилметакрилатом (ТБЭМА) при следующем соотношении компонентов, мас.%:
прекурсор органического флуоресцирующего соединения | 0,1-2 |
оптический прозрачный сополимер ММА с ТХЭМА или ТБЭМА | остальное |
2. Материал по п.1, отличающийся тем, что образование окрашенной флуоресцирующей формы прекурсора органического флуоресцирующего соединения достигается под действием излучения в диапазоне от 250 до 330 нм.
3. Материал по п.1, отличающийся тем, что он дополнительно содержит пиразолин общей формулы
где R1= , , Ph, Ph-CH=CH
R2, R3, R 4=Н, СН3, F, ОСН3, NO2 , в количественном соотношении, мас.%:
пиразолин | 0,1-1 |
4. Материал по п.3, отличающийся тем, что образование окрашенной флуоресцирующей формы прекурсора органического флуоресцирующего соединения достигается под действием излучения в диапазоне от 330 до 500 нм.
Описание изобретения к патенту
Настоящее изобретение относится к области материалов для оптической записи информации, в частности материалов для архивной записи информации, основанной на фотоиндуцированной флуоресценции, с возможностью использования в устройствах оптической памяти, включая трехмерные системы оптической памяти для Read Only Memory (ROM).
Известен материал, в котором лактамы родаминовых красителей применяются в качестве прекурсоров флуоресцирующих производных в пленках полистирола. Описанный материал рассматривается в качестве среды для объемной оптической записи информации. Запись информации осуществляется фокусированным УФ - излучением с длиной волны 320 нм. Под действием света происходит раскрытие лактамного цикла в молекуле родамина, в результате чего образуется флуоресцирующее производное родамина с максимумом флуоресценции 570-590 нм [US Pat. 6.027.855].
Недостатком заявленного в патенте материала является то, что образование флуоресцирующего производного происходит при непосредственном воздействии УФ-излучения на растворенный лактам родамина. При этом наряду с образованием флуоресцирующей раскрытой формы возможны процессы фотодеструкции, что снижает эффективность преобразования бесцветной формы родамина в окрашенную флуоресцирующую форму.
Наиболее близким, выбранным за прототип, является полимерный материал, в котором запатентовано применение системы «прекурсор флуоресцирующего соединения (ПФС) - фоточувствительный агент» для использования в качестве материала для трехмерной оптической памяти. ПФС являются лейкооснования различных флуоресцентных красителей - Родамина В и Родамина 700. В качестве фоточувствительных компонентов заявлено использование фотогенераторов кислоты (ФГК) - o-нитробензальдегида, 1-нитро-2-нафтальдегида. Заявлено также применение 1,2-дибромэтана в присутствии донора протонов - изопропанола в качестве системы для фотогенерации кислоты в результате радикальных реакций [US 2003/0073031].
Использование систем «Основание Родамина В - ФГК» или «лейкооснование Родамина 700 - ФГК» позволяет записывать информацию в полимерном материале действием лазерного излучения. Окрашенные флуоресцирующие центры, образующиеся при записи, обладают высокой темновой стабильностью.
Основной недостаток предложенной в данном патенте системы фотогенерации кислоты с использованием 1,2-дибромэтана в присутствии донора протонов - изопропилового спирта связан с тем, что введение спирта в полимерную композицию может вызвать раскрытие лактонного цикла Родамина, тем самым приводя к увеличению фоновой окраски материала и к снижению контрастности окрашенных центров, образующихся при записи информации. Важным недостатком является также ограниченная с длинноволновой стороны область спектральной чувствительности регистрирующей среды, что ограничивает возможность применения существующих лазерных источников для записи информации. Кроме того, как 1,2-дибромэтан, так и изопропанол имеют относительно низкие температуры кипения и, как следствие, значительную диффузионную подвижность в полимерном материале, что может отрицательно влиять на свойства материала, в первую очередь, снижать разрешающую способность материала как при записи информации, так и при последующем хранении.
Задачей изобретения является получение новых светочувствительных материалов на основе ПФС с незначительной интенсивностью окраски и флуоресценции до облучения материала, низкой диффузионной подвижностью компонентов, сенсибилизирующих флуоресценцию и с расширенной в длинноволновую сторону областью спектральной чувствительности.
Поставленная задача решается тем, что разработан светочувствительный полимерный материал с флуоресцентным считыванием информации, включающий прекурсор органического флуоресцирующего соединения (ПФС), где ПФС растворен в оптически прозрачных сополимерах метилметакрилата (ММА) с 2,2,2-трихлорэтилметакрилата (ТХЭМА, А) или 2,2,2-трибромэтилметакрилата (ТБЭМА, Б), при следующем соотношении компонентов, мас.%:
ПФС | 0,1-2 |
оптический прозрачный сополимер ММА | |
с ТХЭМА или ТБЭМА | остальное |
Образование окрашенной флуоресцирующей формы ПФС достигается под действием излучения в диапазоне от 250 до 330 нм
Материал может дополнительно содержать пиразолины общей формулой
где R1= , , Ph, Ph-CH=CH
R2, R3 , R4=H, CH3, F, OCH3, NO 2
В количественном соотношении, мас.%:
пиразолин | 0,1-1 |
В этом случае образование окрашенной флуоресцирующей формы ПФС достигается под действием излучения в диапазоне от 330 до 500 нм.
В качестве светочувствительного полимерного материала с флуоресцентным считыванием информации используются оптически прозрачные сополимеры ММА с ТХЭМА (А) или ТБЭМА (Б) с содержанием звеньев ТХЭМА или ТБЭМА не более 10 мол.% и молекулярной массой от 50 до 200 кДа, а в качестве ПФС лактоны Родамина Б (I) и Родамина 19 (II). Под действием излучения в диапазоне длин волн от 250 до 330 нм в указанном материале происходит преобразование ПФС во флуоресцирующее состояние.
Синтез гомополимеров ТХЭМА и ТБЭМА и использование их в качестве материалов для галогенированных антиотражающих покрытий заявлено в патенте США [US 6,495,305 В1].
Для расширения спектрального диапазона излучения, под действием которого образуется окрашенная флуоресцирующая форма ПФС, материал дополнительно может содержать пиразолины, в присутствии которых образование окрашенной флуоресцирующей формы ПФС в присутствии пиразолинов достигается под действием излучения в диапазоне от 330 до 500 нм.
Новизна заявленных признаков состоит в использовании в качестве сенсибилизаторов флуоресценции сополимеров ММА с ТХЭМА или ТБЭМА, а также системы пиразолин - сополимер ММА с ТХЭМА или ТБЭМА.
Использование указанных сенсибилизаторов позволяет осуществлять эффективное превращение лейкоформ родаминовых и оксазиновых красителей во флуоресцирующие формы с образованием стабильных флуоресцирующих центров.
Изучение и анализ известной научно-технической патентной литературы показали, что полной совокупности признаков, характеризующих данное техническое решение, ранее не известно, то есть заявляемые решения отвечают критерию «новизна».
Изобретение поясняется примерами и рисунками.
Рис.1. Спектры поглощения и люминесценции пленки полиметилметакрилата (ПММА), содержащей лактон I, дибромэтан и н-бутанол до (1,2) и после (3,4) облучения УФ светом.
Рис.2. Спектры поглощения и люминесценции пленки сополимера метилметакрилата (ММА) и 2,2,2-трихлорэтилметакрилата (ТХЭМА), содержащей лактон I до (1, 2) и после (3, 4) облучения УФ светом.
Рис.3. Спектры поглощения и люминесценции пленки сополимера ММА и ТХЭМА, содержащей лактон II до (1, 2) и после (3, 4) облучения УФ светом.
Рис.4. Спектры поглощения и люминесценции пленки сополимера ММА и ТХЭМА, содержащей лактон I и 4-гидрокси-3-[5-(4-метоксифенил)-1-фенил-4,5-дигидро-1Н-пиразол-3-ил]кумарин до (1) и после (3, 4) облучения светом в максимуме поглощения пиразолина.
Рис.5. Спектры поглощения и люминесценции пленки сополимера ММА и ТБЭМА, содержащей лактон I и 1,3,5-трифенилпиразолин до (1, 2) и после (3, 4) облучения светом в максимуме поглощения пиразолина.
Рис.6. Спектры поглощения пленки ПММА, содержащей лактон I, дибромэтан и н-бутанол (1) и пленки сополимера ММА и ТБЭМА, содержащей лактон I и 1,3,5-трифенилпиразолин (2)
Изобретение иллюстрируется следующими примерами:
Пример 1 (по прототипу)
В смеси 2 мл толуола и 6 мл этилацетата растворяют 0,7 мг лактона I (ПФС), 240 мкл дибромэтана и 50 мкл н-бутанола. В полученном растворе растворяют 0,8 г ПММА. Раствор полимера фильтруют через двойной слой бязи и заливают в горизонтально установленную чашку Петри. Высушивают при комнатной температуре в течение 15-16 часов, а затем при 100-110°С в течение 30 мин. Высушенную пленку снимают со стекла и определяют толщину пленки, которая составляла 95 мкм. Для полученной пленки определяют максимумы полос поглощения и флуоресценции, а также максимальную интенсивность флуоресценции фотопродукта. Из табл.2 видно, что пленка образует флуоресцирующий продукт, но обладает высокой флуоресценцией до облучения. Спектры поглощения до и после УФ облучения через светофильтр УФС-1 представлены на рис.1. Видно, что до облучения пленка характеризуется высокой интенсивностью поглощения и флуоресценции красителя, образующегося при приготовлении пленки.
Пример 2
В стеклянную ампулу, снабженную шлифом и толстостенной перетяжкой, помещают 9,0 мг метилметакрилата (ММА), 1,0 мл ТХЭМА или 1,0 мл ТБЭМА, 10 мг динитрила азо-бис-диизомаслянной кислоты (АИБН) и 0,2 мл додецилмеркаптана (ДМ). Удаляют кислород методом «замораживания - размораживания» под вакуумом и запаивают ампулу. Полимеризацию проводят в водяном термостате при повышении температуры от 45 до 70°С. Окончательную стадию полимеризации проводят в термошкафу при температуре 110-115°С в течение двух часов. После остывания ампулу разбивают и извлекают твердый сополимер. Сополимер очищают двукратным переосаждением из раствора в этилацетате в этанол. Молекулярный вес полученного сополимера составляет 50-60 кДа при содержании звеньев ТХЭМА или ТБЭМА 10 мол.%.
В смеси 2 мл толуола и 6 мл этилацетата растворяют 0,7 мг лактона I (ПФС) и 0,8 г сополимера ММА-ТХЭМА (табл.1). Раствор фильтруют через двойной слой бязи и заливают в горизонтально установленную чашку Петри.
Высушивают при комнатной температуре в течение 15-16 часов, а затем при 100-110°С в течение 30 мин. Высушенную пленку снимают со стекла и определяют ее толщину, которая составила 98 мкм. Для полученной пленки определяют максимумы полос поглощения полос поглощения и флуоресценции, а также максимальную интенсивность флуоресценции фотопродукта. Из табл.2 видно, что пленка образует флуоресцирующий продукт и является устойчивой к преждевременному окрашиванию при хранении. Видно, что в отличие от прототипа до облучения пленка характеризуется слабым поглощением и флуоресценцией красителя, образующегося при изготовлении пленки.
Пример 3
В стеклянную ампулу, снабженную шлифом и толстостенной перетяжкой, помещают 9,0 мг метилметакрилата (ММА), 1,0 мл ТХЭМА или 1,0 мл ТБЭМА, 10 мг динитрила азо-бис-диизомаслянной кислоты (АИБН) и 0,05 мл додецилмеркаптана (ДМ). Удаляют кислород методом «замораживания - размораживания» под вакуумом и запаивают ампулу. Полимеризацию проводят в водяном термостате при повышении температуры от 45 до 70°С. Окончательную стадию полимеризации проводят в термошкафу при температуре 110-115°С в течение двух часов. После остывания ампулу разбивают и извлекают твердый сополимер. Сополимер очищают двукратным переосаждением из раствора в этилацетате в этанол. Молекулярный вес полученного сополимера составляет 180-200 кДа при содержании звеньев ТХЭМА или ТБЭМА 10 мол.%.
В смеси 2 мл толуола и 6 мл этилацетата растворяют 0,7 мг лактона II (ПФС) и 0,8 г сополимера ММА-ТХЭМА (табл.1). Раствор фильтруют через двойной слой бязи и заливают в горизонтально установленную чашку Петри. Высушивают при комнатной температуре в течение 15-16 часов, а затем при 100-110°С в течение 30 мин. Высушенную пленку снимают со стекла и определяют ее толщину, которая составила 98 мкм. Для полученной пленки определяют максимумы полос поглощения и флуоресценции, а также максимальную интенсивность флуоресценции фотопродукта. Из табл.2 видно, что пленка образует флуоресцирующий продукт и является устойчивой к преждевременному окрашиванию при хранении. Видно, что в отличие от прототипа до облучения пленка характеризуется слабым поглощением и флуоресценцией красителя, образующегося при изготовлении пленки.
Остальные примеры приведены в таблице 1.
Таблица 1 | |||||||||
№ приме-ра | ПФС | Полимер | Пиразолин | № Рис. | |||||
название | Конц., вес.% | R1 | R2 | R3 | R4 | Конц., вес.% | |||
2 | Родамин Б | 0,1 | ММА-ТХЭМА | - | - | - | - | - | - |
3 | Родамин 19 | 0,1 | ММА-ТХЭМА | - | - | - | - | - | - |
4 | Родамин Б | 0,1 | ММА-ТХЭМА | - | - | - | - | - | 2 |
5 | Родамин 19 | 2 | ММА-ТБЭМА | - | - | - | - | - | 3 |
6 | Родамин Б | 2 | ММА-ТХЭМА | H | ОСН3 | Н | 0,1 | 4 | |
7 | Родамин Б | 2 | ММА-ТБЭМА | Ph | Н | Н | Н | 1 | 5 |
На рисунке 6 для сравнения представлены спектры поглощения материалов по п.1 и п.2 до УФ облучения. Из него видно смещение максимума поглощения, длина волны которого используется для выбора источника излучения, переводящего ПФС в окрашенную флуоресцирующую форму.
Как видно из приведенных примеров и рисунков, использование полученных материалов позволяет получить светочувствительный полимерный материал для записи информации с флуоресцентным считыванием, обладающим незначительной интенсивностью окраски и флуоресценции до облучения, низкой диффузионной подвижностью компонентов, сенсибилизирующих флуоресценцию ПФС, а также позволяет расширить диапазон излучения, пригодного для перевода ПФС в окрашенную флуоресцирующую форму от 330 до 500 нм.
Класс C09K11/06 содержащие органические люминесцентные вещества
Класс G03C1/73 содержащие органические соединения