биоматериал для возмещения дефектов костей и способ его получения

Классы МПК:A61K35/32 кости; сухожилия; зубы; хрящи
A61L27/12 фосфорсодержащии материалы, например апатит
A61P19/04 для лечения неспецифических заболеваний соединительной ткани
Автор(ы):,
Патентообладатель(и):Федеральное государственное бюджетное учреждение "Российский научный центр "Восстановительная травматология и ортопедия" имени академика Г.А. Илизарова" Министерства здравоохранения и социального развития Российской Федерации (RU)
Приоритеты:
подача заявки:
2011-11-23
публикация патента:

Настоящее изобретение относится к медицине и описывает способ получения биоматериала для возмещения дефектов костей, включающий механическую очистку костей от параоссальных мягких тканей, где органические компоненты кости удаляют с помощью 6% раствора гипохлорита натрия в течение 6-8 суток, измельчают в фарфоровой ступке до размеров гранул диаметром 50-100 мкм, промывают в дистиллированной воде и 96% этаноле и высушивают при комнатной температуре в течение суток. Полученный биоматериал характеризуется шероховатостью, наноструктурированностью и имеет упорядоченную высокопористую структуру с размером пор 50-150 мкм, близкую к естественной структуре минерального матрикса костной ткани. 2 н.п. ф-лы, 1 пр., 5 ил.

биоматериал для возмещения дефектов костей и способ его получения, патент № 2478394 биоматериал для возмещения дефектов костей и способ его получения, патент № 2478394 биоматериал для возмещения дефектов костей и способ его получения, патент № 2478394 биоматериал для возмещения дефектов костей и способ его получения, патент № 2478394 биоматериал для возмещения дефектов костей и способ его получения, патент № 2478394

Формула изобретения

1. Способ получения биоматериала для возмещения дефектов костей, включающий механическую очистку костей от параоссальных мягких тканей, отличающийся тем, что органические компоненты кости удаляют с помощью 6%-ного раствора гипохлорита натрия в течение 6-8 суток, измельчают в фарфоровой ступке до размеров гранул диаметром 50-100 мкм, промывают в дистиллированной воде и 96% этаноле и высушивают при комнатной температуре в течение суток.

2. Биоматериал для возмещения дефектов костей, полученный способом по п.1, состоящий из минерального порошка, выделенного из костной ткани сельскохозяйственных животных, отличающийся тем, что полученный биоматериал характеризуется шероховатостью, наноструктурированностью и имеет упорядоченную высокопористую структуру с размером пор 50-150 мкм, близкую к естественной структуре минерального матрикса костной ткани.

Описание изобретения к патенту

Изобретение относится к медицине, в частности к материалам для возмещения дефектов костей (остеомиелитических секвестров, костных кист, очагов остеонекроза) посредством осуществления остеоиндукции и остеокондукции в полостях, заполненных предлагаемым биоматериалом.

Известен имплантат для пластики костных полостей на основе крупноячеистой коллагеновой матрицы из декальцинированной губчатой кости, причем на нем осуществляют иммобилизацию антибактериальных препаратов, культур бластных клеток и стимуляторов биогенеза (RU № 2335258, 27.05.2008).

Известен биоимплантат для возмещения дефектов минерализованных тканей, который содержит минеральную составляющую, выделенную из костной ткани диафизов сельскохозяйственных животных путем воздействия 0,5 н. раствором соляной кислоты и насыщенного раствора щелочи, дополнительно содержит коллаген, белки плазмы крови пациентов с активным остеогенезом, взятой в период дистракции, физиологический раствор (RU № 2311167 С2, 20.06.2006).

Недостатками известных имплантатов являются: сложность изготовления, низкая остеоиндуктивная и остеопластическая эффективность, отсутствие остеокондуктивной активности, они ограниченно биосовместимы, окружаются фиброзной капсулой. При получении известных имплантатов используют деминерализующие вещества, нарушающие естественную микроархитектонику и химический состав костной ткани, что отрицательно сказывается на остеинтеграционных свойствах имплантатов и клинических результатах.

Задачей изобретения является создание биоматериала с высокими остеоиндуктивными, остеокондуктивными и остеоинтеграционными свойствами, имеющего высокопористую структуру, близкую к естественной структуре минерального матрикса костной ткани, а также упрощение процедуры изготовления.

Указанный технический результат достигается тем, что способ получения биоматериала для возмещения дефектов костей включает механическую очистку костей от параоссальных мягких тканей, органические компоненты кости удаляют с помощью 6% раствора гипохлорита натрия в течение 6-8 суток, измельчают в фарфоровой ступке до размеров гранул диаметром 50-100 мкм, промывают в дистиллированной воде и 96% этаноле и высушивают при комнатной температуре в течение суток. Полученный биоматериал характеризуется шероховатостью и наноструктурированностью и имеет упорядоченную высокопористую структуру с размером пор 50-150 мкм, близкую к естественной структуре минерального матрикса костной ткани.

Настоящее изобретение поясняют описанием, примером использования и иллюстрациями, на которых изображено:

Фиг.1 - упорядоченная высокопористая трехмерная организация биоматериала, близкая к естественной структуре минерализованного матрикса костной ткани. Сканирующая электронная микроскопия;

Фиг.2 - прикрепление к поверхности биоматериала остеогенных клеток и кровеносного сосуда свидетельствует об остеоинтеграционной эффективности биоматериала. Сканирующая электронная микроскопия;

Фиг.3 - врастание кровеносных сосудов и периваскулярных остеогенных клеток в трехмерную высокопористую структуру биоматериала свидетельствует о высоких остеоиндуктивных и остеокондуктивных свойствах биоминерала. Сканирующая электронная микроскопия;

Фиг.4 - эффективность биоматериала, как стимулятора регенерации костной ткани при возмещении дырчатого дефекта большеберцовой кости экспериментальных животных (крыс): а - регенерат животного контрольной группы, б - регенерат животного опытной группы. Срок эксперимента 7 суток. Стрелками обозначены гранулы биоматериала, окруженные новообразованной костной тканью в необычно ранние сроки. Световая микроскопия парафинового среза. Окраска гематоксилином и эозином. Объектив 10, окуляр 10;

Фиг.5 - доля различных тканевых компонентов в составе регенерата, формирующегося после перфорационной травмы большеберцовой кости крыс, в контроле (K) и опыте (О) через 7, 14 и 21 сутки после операции. Белый цвет - неминерализованные компоненты; темно-серый - остеоид костной ткани; черный - минерализованный матрикс костной ткани. Результаты рентгеновского эдектронно-зондового микроанализа.

Способ получения биоматериала осуществляют следующим образом.

Кости сельскохозяйственных животных очищают механическим способом от параоссальных мягких тканей. Органические компоненты кости (клетки, сосуды, костный мозг) удаляют с помощью 6% раствора гипохлорита натрия в течение 6-8 суток. Очищенную кость либо костные блоки измельчают в фарфоровой ступке до размеров частиц 50-100 мкм по трем измерениям (ширина, длина и высота). Полученный порошок, состоящий из гранул диаметром 50-100 мкм, промывают в дистиллированной воде и 96% этаноле и высушивают при комнатной температуре в течение суток.

Полученный биоматериал имеет упорядоченную высокопористую структуру с размером пор 50-150 мкм, близкую к естественной структуре минерального матрикса костной ткани (фиг.1).

Пример использования биоматериала.

В эксперименте на 60 взрослых крысах линии Wistar под общей анестезией в проксимальной трети диафиза большеберцовых костей в контрольной и опытной группах моделировали несквозные дырчатые дефекты диаметром 2 мм и глубиной 2,5-3 мм. В опытной группе животным непосредственно после операции в область сформированного дефекта вводили стерильный порошок биоматериала. Операционную рану послойно ушивали узловыми швами.

Сканирующая электронная микроскопия показала, что биоматериал имеет высокопористую структуру, содержит взаимосвязанные поры размером 50-150 мкм и сохраняет естественную архитектонику минерализованного матрикса костной ткани (фиг.1). Микрорельеф поверхности биоматериала характеризуется шероховатостью и наноструктурированностью, что обеспечивают оптимальные отношения между уровнем адгезии, темпами пролиферации и степенью дифференциации остеогенных клеток (фиг.2). Кровеносные сосуды и остеогенные клетки вросли в биоматериал, что свидетельствует о его высоких остеокондуктивных и остеоиндуктивных свойствах (фиг.3). После введения биоматериала активизировалось репаративное костеобразование и сократились сроки возмещения дефекта кости, о чем свидетельствует проведенное гистологическое исследование (фиг.4). Так в опытной группе животных через 7 суток после операции объем костной ткани в регенерате возрос более чем в 2 раза - с 8,6±0,41% в контроле до 17,9±0,63% в опыте (Р<0,001) (фиг.5).

Использование предлагаемого способа в отделе экспериментальной травматологии и ортопедии ФГБУ «РНЦ «ВТО» им. акад. Г.А.Илизарова» позволило получить биоматериал без воздействия деминерализующих веществ, который имеет высокопористую структуру, близкую к естественной структуре минерального матрикса костной ткани. Предложенный способ упростил процедуру изготовления биоматериала, а его применение позволило сократить сроки возмещения дефектов костей.

Класс A61K35/32 кости; сухожилия; зубы; хрящи

комбинированный костный аллотрансплантат и способ его получения -  патент 2524618 (27.07.2014)
способ восстановления утраченного зуба и способ изготовления восстановительного материала -  патент 2521195 (27.06.2014)
антипролиферативное средство -  патент 2519727 (20.06.2014)
биологически активная композиция для улучшения половой функции мужчин (варианты) -  патент 2519221 (10.06.2014)
способ профилактики кариеса зубов -  патент 2518715 (10.06.2014)
способ получения костного минерального компонента и костный минеральный компонент для замещения и восстановления дефектов костной ткани -  патент 2517037 (27.05.2014)
композиция для костной пластики (варианты) -  патент 2516921 (20.05.2014)
способ получения адаптогенного препарата дорогова фракции 4 (апд-f4) и фракции 5 (апд-f5) -  патент 2509565 (20.03.2014)
способ культивирования клеток зубной пульпы и способ переноса экстрагированного зуба на хранение -  патент 2499609 (27.11.2013)
способ получения биологического гидроксиапатита -  патент 2494751 (10.10.2013)

Класс A61L27/12 фосфорсодержащии материалы, например апатит

материал заменителя костной ткани -  патент 2529802 (27.09.2014)
способ получения карбонатгидроксилапатита из модельного раствора синовиальной жидкости человека -  патент 2526191 (20.08.2014)
способ получения шихты для композиционного материала на основе карбоната кальция и гидроксиапатита и/или карбонатгидроксиапатита для восстановления костной ткани при реконструктивно-пластических операциях -  патент 2523453 (20.07.2014)
способ изготовления внутрикостных имплантатов с антимикробным эффектом -  патент 2512714 (10.04.2014)
отверждаемый биокомпозиционный материал для замещения костных дефектов -  патент 2508131 (27.02.2014)
остеогенный биорезорбируемый материал для замещения костных дефектов и способ его получения -  патент 2504405 (20.01.2014)
биоматериалы на основе фосфата кальция -  патент 2501571 (20.12.2013)
способ получения нанокристаллического кремнийзамещенного гидроксиапатита -  патент 2500840 (10.12.2013)
способ получения канафита -  патент 2499767 (27.11.2013)
пористые микросферы на основе биофосфатов кальция и магния с регулируемым размером частиц для регенерации костной ткани -  патент 2497548 (10.11.2013)

Класс A61P19/04 для лечения неспецифических заболеваний соединительной ткани

способ лечения застарелых повреждений сухожилий -  патент 2524611 (27.07.2014)
способ комбинированного хирургического лечения ладонного фасциального фиброматоза -  патент 2463005 (10.10.2012)
способ лечения повреждений сухожильно-связочных структур конечностей животных -  патент 2419442 (27.05.2011)
фармацевтическая композиция для лечения остеоартрита, содержащая клодроновую кислоту и гиалуроновую кислоту -  патент 2414908 (27.03.2011)
способ коррекции недифференцированной дисплазии соединительной ткани -  патент 2353377 (27.04.2009)
новые диамиды пиримидин-4,6-дикарбоновой кислоты для селективного ингибирования коллагеназ -  патент 2344129 (20.01.2009)
способ лечения остеохондроза позвоночника у лиц пожилого возраста -  патент 2318491 (10.03.2008)
фармацевтические и косметические композиции, содержащие плацентарный фактор роста plgf-1 -  патент 2292906 (10.02.2007)
способ коррекции недифференцированной дисплазии соединительной ткани -  патент 2290175 (27.12.2006)
способы лечения ревматических заболеваний с применением растворимого ctla4 -  патент 2287340 (20.11.2006)
Наверх