способ захолаживания криогенной магистрали жидкостного ракетного двигателя при многократных включениях двигателя

Классы МПК:F02K9/48 приводимых в движение газовой турбиной, работающей на газообразных продуктах сгорания топлива (турбонасосная система подачи)
Автор(ы):,
Патентообладатель(и):Открытое акционерное общество "НПО Энергомаш имени академика В.П. Глушко" (RU)
Приоритеты:
подача заявки:
2011-03-31
публикация патента:

Изобретение относится к области машиностроения, а именно к способу захолаживания криогенной магистрали жидкостного ракетного двигателя при многократных включениях двигателя. Способ захолаживания осуществляют за счет испарения криогенного компонента топлива, остающегося в указанной магистрали, включающей насос и другие элементы конструкции, после останова двигателя, при котором указанная магистраль отсечена со стороны входа и выхода, и дренирования паров криогенного компонента из полости насоса в окружающую среду. Кроме того, после останова двигателя полость насоса через клапан соединяют с дополнительными каналами, выполненными в статоре турбины турбонасосного агрегата, выход из которых может быть соединен с другими горячими элементами конструкции, расположенными за турбиной по газовому тракту. Изобретение обеспечивает повышение стабильности работы турбонасосного агрегата жидкостного ракетного двигателя на пусковых режимах и уменьшение потерь компонентов топлива. 2 з.п. ф-лы, 2 ил.

способ захолаживания криогенной магистрали жидкостного ракетного   двигателя при многократных включениях двигателя, патент № 2478813 способ захолаживания криогенной магистрали жидкостного ракетного   двигателя при многократных включениях двигателя, патент № 2478813

Формула изобретения

1. Способ захолаживания криогенной магистрали жидкостного ракетного двигателя при многократных включениях двигателя, основанный на дренировании компонентов топлива из криогенной магистрали, включающей насос с его подводящей и отводящей магистралями, которая соединена с одной стороны с подбаковым клапаном, а с другой - с входом в газогенератор через клапан, отличающийся тем, что захолаживание указанной магистрали осуществляется за счет испарения криогенного компонента топлива, остающегося в указанной магистрали после останова двигателя, при котором магистраль отсечена со стороны входа и выхода, а дренирование паров криогенного компонента осуществляют из полости насоса через клапан в дренажную магистраль, соединенную с окружающей средой.

2. Способ по п.1, отличающийся тем, что полость насоса соединяют с дренажной магистралью через клапан и дополнительные каналы или полости, выполненные в статоре турбины турбонасосного агрегата.

3. Способ по п.1, отличающийся тем, что после останова двигателя внутреннюю полость насоса соединяют с дренажной магистралью через последовательно соединенные клапан, каналы, выполненные в статоре турбины турбонасосного агрегата и в газоводе, расположенном за турбиной по газовому тракту.

Описание изобретения к патенту

Область техники

Изобретение относится к области машиностроения, а именно к способу захолаживания криогенной магистрали жидкостного ракетного двигателя при многократных включениях двигателя.

Предшествующий уровень техники

Как известно, для надежного запуска насоса, перекачивающего криогенную жидкость, необходимо, чтобы температура конструкции насоса в момент его запуска была равна температуре перекачиваемой жидкости или, по крайней мере, максимально близка к ней.

В технике известен способ обеспечения требуемого температурного состояния конструкции криогенного насоса турбонасосного агрегата жидкостного ракетного двигателя перед пуском, с помощью предварительного захолаживания. Захолаживание осуществляется за счет обеспечения циркуляции криогенного компонента через насос и присоединенные магистрали до достижения конструкцией насоса требуемой температуры. При этом нагревшийся и/или испарившийся компонент либо возвращается в бак ступени, нагревая его, либо сбрасывается во внешнее пространство через дренажную систему и безвозвратно теряется. Также определенные потери компонента связаны с необходимостью термостатирования бака. Потери компонента либо учитываются в объеме заправки бака, либо, для двигателей, захолаживание которых осуществляется на земле, могут возмещаться из внешних наземных источников (см. кн. «Конструкция и проектирование жидкостных ракетных двигателей». Под общей редакцией Г.Г.Гахуна - М.: Машиностроение, 1989, с.179, рис.4.86). Аналог предлагаемого изобретения.

Недостатком указанного способа является его ограниченная применимость для двигателей верхних ступеней и особенно разгонных блоков, предназначенных для работы с многократными включениями в полете. Многократные захолаживания криогенных насосов турбонасосного агрегата приведут к повышенным потерям компонентов. При этом потери при каждом запуске будут зависеть от разницы между температурой компонента и температурой конструкции турбонасосного агрегата в момент запуска двигателя. Последняя будет зависеть, прежде всего, от временного интервала между включениями двигателя, который определяет степень прогрева насоса за счет теплоподвода от горячей турбины.

Потери при очередном пуске будут минимальны, если интервал между пусками будет достаточно коротким для того, чтобы температура насоса оставалась близкой к температуре компонента. С увеличением интервалов между пусками температура насоса сначала будет возрастать до некоторого максимального значения, и, соответственно, потери будут возрастать и достигнут максимума при некоторой температуре насоса. Затем, по мере естественного охлаждения конструкции, они вновь начнут снижаться.

Таким образом, расход компонента, необходимый для захолаживания насоса, при каждом пуске будет зависеть от степени прогрева насоса за время, прошедшее после предыдущего пуска, а общий расход будет определяться количеством пусков. Хотя суммарные потери, в общем случае, будут не пропорциональны количеству повторных пусков.

Кроме того, поскольку из-за относительно малого объема баков и, соответственно, малого запаса компонентов на борту, возврат испарившегося компонента в бак для последующей конденсации лимитирован количеством тепла, которое может быть поглощено в баке без превышения допустимой температуры, значительная часть компонента, использованного для захолаживания, будет выброшена за борт.

Единственным способом компенсации потерь является в рассматриваемом случае увеличение запаса топлива на борту, что приводит к увеличению объема и массы баков и общей массы ступени или разгонного блока.

В технике также известен способ запуска жидкостного ракетного двигателя без предварительного захолаживания турбонасосного агрегата. В этом случае захолаживание происходит непосредственно при запуске турбонасосного агрегата в процессе заполнения магистралей и внутренних полостей, и запуск осуществляется при наличии определенной доли паровой фазы в потоке компонента, проходящего через насос (см. кн. Шерстянников В.А. «Двигатели, опередившие время (отечественные ЖРД 60-80-х годов XX века»). - М.: 2006, с.56-57, § 3.1.3). Указанное описание способа принимаем за прототип предлагаемого изобретения.

Этот способ также не исключает потерь компонента, испаряющегося в промежутке времени между подачей компонента в насос и выходом турбонасосного агрегата на номинальный режим. Величина этих потерь зависит от степени прогрева насоса в перерывах между включениями двигателя и величины промежутка времени между моментом подачи компонента в полость насоса и началом рабочего процесса в газогенераторе и в камере двигателя, связанной с некоторой задержкой запуска двигателя из-за появления в потоке жидкости паровой фазы.

Кроме того, дополнительные потери компонента возникают и при останове двигателя и связаны с послепусковой продувкой полостей двигателя, необходимой для исключения несанкционированного взаимодействия компонентов при повторных включениях двигателя.

Раскрытие изобретения

Задача, на решение которой направлено изобретение, состоит в повышении стабильности работы турбонасосного агрегата жидкостного ракетного двигателя на пусковых режимах и уменьшении непроизводительных потерь криогенного компонента топлива.

Поставленная задача решена за счет того, что в способе захолаживания криогенной магистрали жидкостного ракетного двигателя при многократных включениях двигателя, основанном на дренировании компонентов топлива из криогенной магистрали, включающей насос с его подводящей и отводящей магистралями, которая соединена с одной стороны с подбаковым клапаном, а с другой - с входом в газогенератор через клапан, при этом захолаживание указанной магистрали осуществляется за счет испарения криогенного компонента топлива, остающегося в этой магистрали после останова двигателя, при котором магистраль отсечена со стороны ее входа и выхода, а дренирование паров криогенного компонента осуществляют из полости насоса через клапан в дренажную магистраль, соединенную с окружающей средой.

Другими отличиями предлагаемого способа являются:

- полость насоса соединяют с дренажной магистралью через клапан и дополнительные каналы или полости, выполненные в статоре турбины турбонасосного агрегата;

- после останова двигателя внутреннюю полость насоса соединяют с дренажной магистралью через последовательно соединенные клапан, каналы, выполненные в статоре турбины турбонасосного агрегата и в газоводе, расположенном за турбиной по газовому тракту.

Технический результат состоит в увеличении времени поддержания температуры насоса на уровне, близком к температуре компонента, и за счет уменьшения общего запаса тепла в конструкции двигателя и существенном уменьшении как скорости прогрева насоса после испарения компонента, так и максимального уровня этого прогрева. Тем самым улучшаются условия повторных запусков двигателя, а также существенно сокращаются непроизводительные потери компонента.

Поскольку поддержание низкой температуры насоса будет малоэффективным при сохранении высокой температуры турбины, особенно при длительных промежутках между включениями двигателя, то, несмотря на то, что при охлаждении насоса одновременно происходит частичное охлаждение турбины за счет теплопроводности стыка, желательно предусмотреть и ее дополнительное охлаждение. Такое охлаждение можно осуществить при прохождении холодных паров испарившегося компонента через каналы и/или полости, специально выполненные в статоре турбины. В этом случае соединение с дренажной магистралью осуществляется через указанные каналы, которые с одной стороны соединяются через клапан с внутренней полостью насоса, а с другой - с дренажной магистралью двигателя. Эти каналы, при необходимости, могут также охватывать и другие горячие узлы, расположенные по тракту за турбиной (например газовод), обеспечивая их охлаждение и уменьшение общего количества тепла, запасенного в конструкции за время работы двигателя.

Выбор одного из вариантов или их совмещение в одной конструкции потребует специального анализа конструкции применительно к конкретным условиям и режимам работы не только двигателя, но и аппарата, на котором он установлен.

Естественно, что таким образом может быть использован только компонент, способный испаряться без образования осадка, прежде всего криогенный, и обладающий минимальной коррозионной активностью.

Учитывая, что компоненты, остающиеся после останова двигателя во внутренних полостях насосов, при штатной эксплуатации двигателя безвозвратно теряются при межпусковых продувках, которые производятся для уменьшения импульса последействия и исключения нештатного взаимодействия компонентов при повторном включении двигателя, предлагаемый способ, помимо улучшения условий запуска турбонасосного агрегата, позволяет также снизить непроизводительные потери компонентов топлива.

Краткое описание чертежей

На фиг.1 и 2 изображены фрагменты пневмогидравлической схемы жидкостного ракетного двигателя с криогенной магистралью.

Описание изобретения

Указанная пневмогидравлическая схема (фиг.1) включает криогенную магистраль 1, которая с одной стороны соединена с подбаковым клапаном (не показан), а с другой - с входом 2 в насос 3. Приводом этого насоса является газовая турбина 4 турбонасосного агрегата. Турбина 4 приводится во вращение газами, вырабатываемыми в газогенераторе 5. Турбина 4 и насос 3 установлены на общем валу 6. Выход 7 насоса 3 через клапан 8 соединен с газогенератором 5. Внутренняя полость 9 насоса 3 с помощью клапана 10 соединена с дренажной магистралью 11, выход из которой соединен с окружающей средой.

Во втором варианте (фиг.2) полость 9 насоса 3 соединяется с дренажной магистралью 11 через последовательно соединенные клапан 10 и каналы 12, выполненные в статоре турбины 4 турбонасосного агрегата и в газоводе, расположенном за турбиной по газовому тракту.

Работа устройства

После останова двигателя внутренняя криогенная магистраль 1 с помощью клапана 8 отсекается от входа в газогенератор 5, а с помощью подбакового клапана (не показан) - от бака (не показан). При этом остающийся в этой магистрали криогенный компонент топлива испаряется, а его пары через клапан 10, соединенный с полостью насоса 9, сбрасываются через дренажную магистраль 11 в окружающую среду, охлаждая корпус насоса 3. Такое решение позволяет облегчить условия повторного запуска двигателя и снизить непроизводительные потери компонентов топлива.

Во втором варианте (Фиг.2) после останова двигателя внутреннюю полость 9 насоса 3 соединяют с дренажной магистралью 11 через последовательно соединенные клапан 10 и каналы 12, выполненные в статоре турбины 4 турбонасосного агрегата и в газоводе, расположенном за турбиной по газовому тракту.

Такое решение позволяет обеспечить непосредственное охлаждение наиболее горячего узла конструкции - статора турбины и тем самым уменьшить тепловой поток, передающийся корпусу насоса 3, что повышает эффективность охлаждения турбонасосного агрегата.

Промышленная применимость

Изобретение может использоваться в малорасходных турбонасосных агрегатах, например предназначенных для ЖРД малых тяг, режим работы которых предусматривает многократное включение, а количество испаренного при захолаживании компонента позволяет сбросить его в окружающее пространство с использованием известных способов компенсации импульса. Кроме того, изобретение также может использоваться в агрегатах, перекачивающих криогенные жидкости и работающих в повторно-кратковременном режиме.

Класс F02K9/48 приводимых в движение газовой турбиной, работающей на газообразных продуктах сгорания топлива (турбонасосная система подачи)

жидкостный ракетный двигатель по схеме с дожиганием генераторного газа -  патент 2520771 (27.06.2014)
жидкостный ракетный двигатель -  патент 2514582 (27.04.2014)
жидкостный ракетный двигатель -  патент 2514466 (27.04.2014)
способ обеспечения бессрывной работы турбонасосного агрегата многорежимного жидкостного ракетного двигателя на режимах глубокого дросселирования -  патент 2513023 (20.04.2014)
зенитная ракета и жидкостный ракетный двигатель -  патент 2496090 (20.10.2013)
жидкостный ракетный двигатель -  патент 2495273 (10.10.2013)
атомная подводная лодка -  патент 2494004 (27.09.2013)
атомная подводная лодка и жидкостный ракетный двигатель морского исполнения -  патент 2488517 (27.07.2013)
трехкомпонентный жидкостный ракетный двигатель -  патент 2484287 (10.06.2013)
кислородно-водородный жидкостный ракетный двигатель -  патент 2484286 (10.06.2013)
Наверх