преобразователь температуры в напряжение
Классы МПК: | G01K7/02 с использованием термоэлектрических элементов, например термопар |
Автор(ы): | Мищенко Сергей Владимирович (RU), Фесенко Александр Иванович (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" (ФГБОУ ВПО ТГТУ) (RU) |
Приоритеты: |
подача заявки:
2011-11-30 публикация патента:
27.04.2013 |
Изобретение относится к измерительной технике и может найти применение в термометрии. Преобразователь температуры в напряжение содержит последовательно соединенную термопару и усилитель, источник опорного напряжения, который выходом подключен к первому входу сумматора, а также аналоговое делительное устройство и дифференциальный усилитель, соединенные последовательно через прямой вход дифференциального усилителя, а также первый масштабный преобразователь и второй масштабный преобразователь, входом подключенный к первому входу сумматора, а выходом - к инвертирующему входу дифференциального усилителя. Выход усилителя через первый масштабный преобразователь подключен ко второму входу сумматора, а выход сумматора связан со вторым выходом аналогового делительного устройства. Вход квадратора соединен с выходом усилителя и входом первого масштабного преобразователя, а выход подключен к первому входу аналогового делительного устройства. Технический результат: повышение точности работы преобразователя температуры в напряжении с возможностью его настройки и калибровки. 1 ил.
Формула изобретения
Преобразователь температуры в напряжение, содержащий последовательно соединенную термопару и усилитель, источник опорного напряжения, выходом подключенный к первому входу сумматора, аналоговое делительное устройство и дифференциальный усилитель, соединенные последовательно через прямой вход дифференциального усилителя, первый масштабный преобразователь и второй масштабный преобразователь, входом подключенный к первому входу сумматора, а выходом к инвертирующему входу дифференциального усилителя, при этом выход усилителя через первый масштабный преобразователь подсоединен ко второму входу сумматора, а выход сумматора связан со вторым входом аналогового делительного устройства, отличающийся тем, что он дополнительно снабжен квадратором, вход которого соединен с выходом усилителя и входом первого масштабного преобразователя, а выход подключен к первому входу аналогового делительного устройства.
Описание изобретения к патенту
Предлагаемое изобретение относится к измерительной технике и может найти применение в термометрии.
Известны устройства для преобразования измеренной температуры в напряжение (авт. свид. СССР N473065, М. кл. G01R 7/20, G01R 17/10. бюл. № 21 от 05.06.75), содержащие измерительные мосты, питаемые от источника постоянного тока с двумя плечами из активных сопротивлений или с четырьмя составными триодами два из которых прямой проводимости, а два обратной проводимости, где первичными преобразователями температуры являются полупроводниковые терморезисторы, включенные в цепи делителей баз триодов.
Недостатком этих устройств является сложность настройки и калибровки преобразователей.
Известен также преобразователь температуры в напряжении (авт. свид. СССР № 1597598 A1 G01K 7/00, 07.10.90, бюл. № 37), принятый за прототип, содержащий усилитель, подключенный входом к термопаре, выход которого соединен с первым входом аналогового делительного устройства и через последовательно соединенные масштабный преобразователь и второй вход сумматора подключен ко второму входу делительного устройства, при этом первый вход сумматора связан с источником опорного напряжения, выход которого также соединен через второй масштабный преобразователь со вторым входом дифференциального усилителя, первый вход которого связан с выходом делительного устройства.
Недостатком этого преобразователя является низкая точность работы. Покажем это на примере выходного сигнала указанного преобразователя:
где К2, К3, К 4, К5 - безразмерные коэффициенты; U0 - опорное напряжение; Ex - термоЭДС термопары. Из (7) видно, что уменьшаемое в скобах после деления числителя и знаменателя дроби на величину Ех становится безразмерной величиной. Из этой безразмерной величины, представленной напряжением на выходе аналогового делительного устройства, вычитается конкретная физическая величина К6 U0, что является недопустимым с точки зрения физического смысла.
Техническим результатом предлагаемого изобретения является повышение точности работы с возможностью настройки и калибровки преобразователя температуры в напряжение.
В предлагаемом преобразователе температуры в напряжение это достигается тем, что он содержит последовательно соединенную термопару и усилитель, источник опорного напряжения, выходом подключенный к первому входу сумматора, аналоговое делительное устройство и дифференциальный усилитель, соединенные последовательно через прямой вход дифференциального усилителя, первый масштабный преобразователь и второй масштабный преобразователь, входом подключенный к первому входу сумматора, а выходом к инвертирующему входу дифференциального усилителя, при этом выход усилителя через первый масштабный преобразователь подсоединен ко второму входу сумматора, выход сумматора связан со вторым входом аналогового делительного устройства, а также квадратор, вход которого соединен с выходом усилителя и входом первого масштабного преобразователя, а выход подключен к первому входу аналогового делительного устройства.
На фиг.1 приведена схема предлагаемого преобразователя температуры в напряжение.
Преобразователь температуры в напряжение содержит термопару 1, соединенную с входом усилителя 2, связанного через последовательно соединенный квадратор 3 с первым входом аналогового делительного устройства 4, а также через последовательно соединенный первый масштабный преобразователь 5 со вторым входом сумматора 6, первый вход которого соединен с источником опорного напряжения 7, который через второй масштабный преобразователь 8 подключен ко второму входу дифференциального усилителя 9, первый вход которого связан с выходом делительного устройства 4, при этом выход сумматора соединен со вторым входом делителя 4.
Преобразователь температуры в напряжение работает следующим образом. Температура измеряемой среды Т х преобразуется термопарой 1 в термоЭДС Ex, которая усиливается усилителем 2 до значения напряжения;
Где К2 - коэффициент усиления усилителя 2.
На выходе масштабного преобразователя 5 с коэффициентом передачи К5 формируется напряжение;
а на выходе квадратора 3
На второй вход сумматора 6 подается выходное напряжение с выхода источника 7 опорного напряжения. Соответственно на выходе сумматора в 6 формируется напряжение
Выходное напряжение U6 сумматора поступает на второй вход аналогового делительного устройства 4, на первый вход которого подается напряжение с выхода квадратора 3. После осуществления операции деления устройства 4 напряжение равно;
где К4 - коэффициент передачи делителя 4.
Напряжение U8 поступает на инвертирующий вход дифференциального усилителя 9, а на прямой вход - напряжение U4, то выходное напряжение U вых дифференциального усилителя 9
где K8 - коэффициент преобразования масштабного преобразователя 8.
Подставив (5) и (7) в уравнение (6), получим выражение для выходного напряжения предложенного преобразователя температуры
,
где К9 - коэффициент передачи дифференциального усилителя 9.
Выбором коэффициентов К9 и К4 обеспечивается заданное значение нормированного уровня выходного напряжения. Выбором коэффициентов К2 и К5 обеспечивается близкая к линейной зависимость Uвых от преобразуемой температуры Т х в диапазоне Txmin Txmax, а величиной коэффициента K8 обеспечивается необходимое значение напряжения смещения (U см=K8U0) для уменьшения аддитивной составляющей погрешности преобразования и для создания нулевого уровня выходного напряжения Txmin 0, т.е. в случае, если нормированный диапазон унифицированного сигнала на выходе преобразователя задается от 0 до Uвых.max .
Таким образом, введение квадратора обеспечивает повышение точности работы преобразователя температуры в напряжение по сравнению с прототипом.
Класс G01K7/02 с использованием термоэлектрических элементов, например термопар