способ определения коэффициента относительной эффективности и эквивалентной дозы источника рентгеновского излучения

Классы МПК:H01L21/66 испытания или измерения в процессе изготовления или обработки
Автор(ы):, , ,
Патентообладатель(и):Федеральное государственное унитарное предприятие федеральный научно-производственный центр "Научно-исследовательский институт измерительных систем им. Ю.Е. Седакова" (RU)
Приоритеты:
подача заявки:
2011-08-31
публикация патента:

Изобретение относится к области измерительной техники. Технический результат - получение в реальном масштабе времени величины коэффициента относительной эффективности и эквивалентной дозы источника рентгеновского излучения, что позволяет по известной зависимости для транзисторов оценить радиационное изменение амплитудных и временных параметров. В способе определения коэффициента относительной эффективности и эквивалентной дозы источника рентгеновского излучения в состав каждой БИС вводят встроенные дозиметры сопровождения в виде независимых тестовых n- и p-канальных транзисторных структур МДП, включенных в режиме конденсатора, эти структуры независимо облучают в составе разных БИС импульсным излучением рентгеновского источника или излучением гамма-квантов нуклидного источника Co 60, электрофизические параметры структур МДП до и в процессе облучения определяют с использованием способа кулонометрического измерения и по изменению импульсного падения напряжения на измерительном резисторе RH, включенном последовательно между телом структуры МДП, сформированной по единой базовой технологии, что и для основной БИС, и его приращения при воздействии ионизирующих излучений различной природы получают значение RDEF результата воздействия на БИС технологии КМОП/КНД излучения импульсного рентгеновского источника по сравнению с гамма-излучением эталонного нуклидного источника Co60 с использованием определенного соотношения. 3 з.п. ф-лы, 8 ил., 3 табл.

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

Формула изобретения

1. Способ определения коэффициента относительной эффективности и эквивалентной дозы источника рентгеновского излучения, включающий введение в состав каждой БИС встроенных дозиметров сопровождения в виде независимых тестовых n- и p-канальных транзисторных структур МДП, включенных в режиме конденсатора, независимое облучение таких структур в составе разных БИС импульсным излучением рентгеновского источника или излучением гамма-квантов нуклидного источника Co 60, измерения электрофизических параметров до и в процессе облучения, отличающийся тем, что электрофизические параметры структур МДП определяют с использованием способа кулонометрического измерения путем подачи на затвор этих структур импульса напряжения прямоугольной формы положительной полярности длительностью способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 P и величиной UP и контроля падения напряжения на измерительном резисторе RH, включенном последовательно между телом структуры МДП, сформированной по единой базовой технологии, что и для основной БИС, сравнения результатов измерения падения напряжения на измерительном резисторе и его приращения при воздействии ионизирующих излучений различной природы, а коэффициент относительной эффективности RDEF результата воздействия на БИС технологии КМОП/КНД излучения импульсного рентгеновского источника по сравнению с гамма-излучением эталонного нуклидного источника Co60 получают из измерений падения напряжения на резисторе нагрузки RH и его приращения в результате воздействия ИИ с использованием соотношения

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

где способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 - падение напряжения на измерительном резисторе на участке формирования резистивных утечек подзатворного диэлектрика Ф4 процесса кулонометрического измерения электрофизических параметров при облучении структур МДП импульсным рентгеновским излучением источника X-Ray;

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 - падение напряжения на измерительном резисторе на участке Ф4 при облучении структур МДП гамма-квантами источника Со 60;

UD - падение напряжения на измерительном резисторе в отсутствие воздействия ионизирующего излучения;

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

- приращение падения напряжения на измерительном резисторе в условиях облучения гамма-квантами источника Со 60;

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

- приращение падения напряжения на измерительном резисторе в условиях облучения рентгеновским излучением источника X-Ray;

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 UD=UP-UD

- приращение падения напряжения на измерительном резисторе на участке Ф4 в условиях отсутствия облучения, а эквивалентную дозу способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

импульсного рентгеновского излучения определяют в единицах, эквивалентных спектру нуклидного источника, с использованием значения RDEF, полученного для конкретной величины поглощенной дозы нуклидного источника Со60, из соотношения

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

где способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 - мощность дозы 1 нуклидного источника Со60 ;

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 - длительность воздействия излучения нуклидного источника Co60.

2. Способ по п.1, отличающийся тем, что для исключения эффекта «супервосстановления» порогового напряжения транзисторов n-МДП и p-МДП, мощность дозы источника импульсного рентгеновского излучения и источника гамма-квантов Со60 выбирают из условия PX-Ray,Со-60способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 103рад(SiO2)·с-1.

3. Способ по п.1, отличающийся тем, что, с целью получения результатов измерений в реальном масштабе времени, подачу импульсного напряжения прямоугольной формы положительной полярности длительностью способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 P и величиной UP и контроль падения напряжения на измерительном резисторе RH синхронизируют по времени по переднему фронту или заднему фронту рентгеновского импульса, а при облучении гамма-квантами источника Co60 динамику накопления дозы и изменения величины RDEF осуществляют путем подачи импульса напряжения UP на тестовые структуры встроенных дозиметров с периодичностью, определяемой соотношением между предельной возможной частотой генерации электрического импульса напряжения UP и временем экспозиции тестовых структур МДП нуклидного источника Со60 для набора требуемого верхнего допустимого уровня полной поглощенной дозы ИИ.

4. Способ по п.1 или 3, отличающийся тем, что, с целью создания условий равенства радиационно-индуцированных зарядов в структурах МДП, время воздействия излучения способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 нуклидного источника Co60 выбирают в соответствии с соотношением

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

где способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 - поглощенная доза от источника импульсного рентгеновского излучения в единицах энергии квантов Eспособ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 =1,25 МэВ.

Описание изобретения к патенту

Изобретение относится к области измерительной техники, в частности к оценке уровня стойкости больших интегральных схем (БИС) на основе структур «металл - диэлектрик - полупроводник» (МДП) к воздействию дозовых эффектов от импульсного ионизирующего излучения при реализации варьирующихся технологических процессов.

В современной электронике широкое распространение получили комплементарные, т.е. взаимодополняющие структуры «металл - оксид - полупроводник» (КМОП), сформированные в тонком приборном слое кремния на сапфировой подложке (КМОП/КНИ) или в гетероэпитаксиальных структурах со скрытым слоем изолятора из диоксида кремния (КМОП/КНИ). Такие структуры имеют общее название «кремний-на-диэлектрике» (КНД).

При проведении импульсных радиационных исследований интегральных схем, изготовленных по технологии КНД, актуальной задачей является контроль уровня стойкости к дозовым эффектам (эффектам интегральной дозы - Total Integrated Dose, TID), вызванным генерацией радиационно-индуцированных зарядов Qot в подзатворный диэлектрик и на уровни дефектов структуры на границе раздела «полупроводник - диэлектрик» - Qit.

Для измерения полной (интегральной) поглощенной дозы в гетероструктуре БИС, TID обычно используют внешние термолюминесцентные дозиметры (ТЛД) сопровождения, представляющие собой стеклянные цилиндры, прозрачные для света, переменных размеров с примесью либо флюорида лития (LiF), либо флюорида кальция (CaF 2) /1/. Они могут быть смешаны с другими веществами или войти в состав специализированной изотопной смеси для особых целей, таких как нейтронная дозиметрия. ТЛД - наиболее часто используемый вид малогабаритных дозиметров. Их действие основано на том, что когда какие-либо вещества поглощают энергию ионизирующего излучения, они ее накапливают, так что впоследствии при нагревании веществ она может быть высвобождена в виде светового излучения. В большой степени интенсивность светового излучения прямо пропорциональна поглощенной энергии ИИ и таким образом поглощенной дозе в веществе. Эта пропорция справедлива для широкого диапазона энергии ионизирующего излучения и показателей поглощенных доз. Так как основной материал матрицы ТЛД - Al2O3 отличается по плотности от основных материалов БИС - Si или SiO2, то возникает задача пересчета измеренной TID на условия поглощения в Si или SiO2 /2-3/. Другим недостатком является несоизмеримость толщины ТЛД порядка 0,5способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 1 мм с толщиной приборного слоя гетероструктуры БИС порядка 0,18способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 0,6 мкм или оксида подзатворного узла, что вызывает необходимость учета реального спектрально-энергетического распределения (СЭР) источника ионизирующего излучения (ИИ) /4/. Особенно это актуально при использовании в качестве источника ИИ импульсных рентгеновских аппаратов с максимальной энергией квантов рентгеновского излучения в спектре до 100 кэВ /5-6/. Известно, что при применении ТЛД с толщиной до 1 мм возможна погрешность оценки величины TID до 40%, а при пересчете на условия облучения на эталонном нуклидном источнике Co60 со средней энергией гамма-квантов Е способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 =1,25 МэВ такая погрешность может достигать величины 20% /4/. Коэффициент относительной эффективности (КОЭ) (Relative Dose Enhancement Factor (RDEF)) воздействия гамма-рентгеновского излучения определяется как отношение TID источников ИИ с различным СЭР, вызывающих одинаковые изменения радиационно-критических параметров (РКП) в виде:

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

где Dспособ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 (Co60) - TID от излучения эталонного нуклидного источника Со60; DX-Ray - TID от излучения рентгеновского источника ИИ при постоянстве мощности дозы обоих источников Pспособ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 (Co60)способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 PX-Ray = Const и радиационного изменения РКП - способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 РКП=Const.

Для уменьшения значения RDEF целесообразно выполнить интегрированный в чип БИС дозиметр ИИ, на базе транзисторной структуры МОП в едином технологическом цикле с остальными транзисторными структурами БИС технологии КМОП/КНД (далее - МДП) /8, 10/. Это позволит скоррелировать результаты измерения TID или мощности дозы Pспособ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 , X-Ray при мониторинге импульса ИИ по результатам контроля амплитудно-временного распределения импульса ИИ /3, 5, 6/.

Известен способ определения эквивалентной TID источника рентгеновского излучения с использованием результатов предварительного облучения на нуклидном источнике Со60 /6/ и контроля сдвига порогового напряжения способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 VTH на выходной характеристике зависимости тока стока от напряжения «затвор - исток» ID=f(V GS) (Фиг.1-Фиг.3).

Недостатком указанного способа является высокая стоимость подобных испытаний и продолжительность во времени проведения подобных экспериментов, а также отсутствие однозначно определенных RDEF воздействия излучения X-Ray относительно способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 -излучения Со60 и зависимости от результата оценки значения RDEF от электрического режима структуры МОП в процессе облучения и в результате измерения /3/.

Наиболее близким по технической сущности и принятым за прототип является экспериментально разработанный способ прогнозирования интенсивности параметрических отказов БИС в нолях рентгеновского и гамма-излучений по критерию радиационного дрейфа порогового напряжения способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 VTH на зависимости тока стока ID n- и p-канальных транзисторных структур от напряжения «затвор - исток» VGS /8/. Существенным недостатком этого способа является необходимость получения большого объема экспериментальных данных для получения соответствия результатов облучения на моделирующих установках ИИ и эталонном источнике Co60, что во многом ограничивает получение информации в реальном масштабе времени о возможности реализации параметрического отказа по выбранному критерию - току стока ID. Коэффициент RDEF в этом способе определяют с использованием соотношения:

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

где Kg - постоянная генерации носителей заряда, [Кл см-3·рад(Si)-1 ]; fy - предельная доля нерекомбинированного радиационно-индуцированного заряда; Bde - фактор дозового накопления; D- доза ИИ, [рад(SiO2)]; индексы «Co-60» и «Х-Ray» относятся к нуклидному источнику и рентгеновскому излучению, соответственно.

Техническим результатом предлагаемого способа является получение в реальном масштабе времени величины коэффициента относительной эффективности RDEF и эквивалентной дозы источника рентгеновского излучения (полной интегральной дозы, TID), что позволяет по известной зависимости VTH =f(TID) для транзисторов n-МДП и p-МДП оценить радиационное изменение амплитудных и временных РКП для БИС.

Технический результат достигается тем, что в способе определения коэффициента относительной эффективности и эквивалентной дозы источника рентгеновского излучения, включающем введение в состав каждой БИС встроенных дозиметров сопровождения в виде независимых тестовых n- и p-канальных транзисторных структур МДП, включенных в режиме конденсатора, независимое облучение таких структур в составе разных БИС импульсным излучением рентгеновского источника или излучением гамма-квантов нуклидного источника Со60, измерения электрофизических параметров до и в процессе облучения, электрофизические параметры структур МДП определяют с использованием способа кулонометрического измерения путем подачи на затвор этих структур импульса напряжения прямоугольной формы положительной полярности длительностью способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 P и величиной UP и контроля падения напряжения на измерительном резисторе RH, включенном последовательно между телом структуры МДП, сформированной по единой базовой технологии, что и для основной БИС, сравнения результатов измерения падения напряжения на измерительном резисторе и его приращения при воздействии ионизирующих излучений различной природы, а коэффициент относительной эффективности RDEF результата воздействия на БИС технологии КМОП/КНД излучения импульсного рентгеновского источника по сравнению с гамма-излучением эталонного нуклидного источника Со60 получают из измерений падения напряжения на резисторе нагрузки RH и его приращения в результате воздействия ИИ с использованием соотношения ((ПА.21 Приложение «А»):

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

где способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 - падение напряжения на измерительном резисторе на участке формирования резистивных утечек подзатворного диэлектрика Ф4 процесса кулонометрического измерения электрофизических параметров при облучении структур МДП импульсным рентгеновским излучением источника X-Ray; способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 - падение напряжения на измерительном резисторе на участке Ф4 при облучении структур МДП гамма-квантами источника Со 60; UD - падение напряжения на измерительном резисторе в отсутствие воздействия ионизирующего излучения;

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

- приращение падения напряжения на измерительном резисторе в условиях облучения гамма- квантами источника Со60;

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

- приращение падения напряжения на измерительном резисторе в условиях облучения рентгеновским излучением источника X-Ray;

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

- приращение падения напряжения на измерительном резисторе на участке Ф4 в условиях отсутствия облучения, а эквивалентную дозу способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 импульсного рентгеновского излучения определяют в единицах, эквивалентных спектру нуклидного источника, с использованием значения RDEF, полученного для конкретной величины поглощенной дозы нуклидного источника Со60, из соотношения:

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

где способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 - мощность дозы нуклидного источника Со60; способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 - длительность воздействия излучения нуклидного источника Со60.

Для исключения эффекта «супервосстановления» порогового напряжения транзисторов n-МДП и p-МДП мощность дозы источника импульсного рентгеновского излучения и источника гамма-квантов Со60 выбирают из условия PX-Ray,Co-60способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 103рад(SiO2)·c-1.

Для получения результатов измерений в реальном масштабе времени подачу импульсного напряжения прямоугольной формы положительной полярности длительностью способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 P и величиной UP и контроль падения напряжения на измерительном резисторе RH синхронизируют по времени по переднему фронту или заднему фронту рентгеновского импульса, а при облучении гамма-квантами источника Со60 динамику накопления дозы и изменения величины RDEF осуществляют путем подачи импульса напряжения UP на тестовые структуры встроенных дозиметров с периодичностью, определяемой соотношением между предельной возможной частой генерации электрического импульса напряжения UP и временем экспозиции тестовых структур МДП нуклидного источника Со60 для набора требуемого верхнего допустимого уровня полной поглощенной дозы ИИ.

С целью создания условий равенства радиационно-индуцированных зарядов в структурах МДП время воздействия излучения способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 нуклидного источника Со60 выбирают в соответствии с соотношением ((ПА.24) Приложение «А»):

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

где способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 - поглощенная доза от источника импульсного рентгеновскою излучения в единицах энергии квантов Eспособ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 =1,25 МэВ.

На Фиг.1 показан радиационный сдвиг интерфейсной компоненты способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 Vit и объемной компоненты способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 Vot порогового напряжения на выходных вольтамперных характеристиках IDD=f(VGS) транзисторов структуры p-МОП и n-МОП.

На Фиг.2 показан радиационный сдвиг порогового напряжения способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 VTH и его объемной способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 Vot и интерфейсной способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 Vit составляющих в относительных единицах от величины полной интегральной дозы в относительных единицах а) для транзистора n-МОП и б) для транзистора p-МОП.

На Фиг.3 показаны зоны доминирующего влияния на сдвиг порогового напряжения способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 VTH объемных и интерфейсных радиационно-индуцированных зарядов в структуре n-МОП и зона их суперпозиции в структуре p-МОП.

На Фиг.4 показано изменение радиационного сдвига порогового напряжения способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 VTH по отношению к значению, полученному для условий облучения на нуклидном источнике Со60, в зависимости от энергии быстрых электронов и протонов. Толщина подзатворного диэлектрика приведена в качестве параметра (10 и 35 нм). Отрезками прямых линий показан диапазон изменения соответствующих расчетных значений с использованим метода Моте-Карло.

Фиг.5 приведена схема для кулонометрического измерения ЭФП тестовых конденсаторов структуры МДП:

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 - генератор прямоугольных импульсов напряжения;

R1=способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 - согласующее волновое сопротивление;

МДП - тестовая структура конденсатора МДП;

RH - измерительный резистор;

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 TDS - осциллографический регистратор релаксационного процесса.

На Фиг.6 показаны зависимости:

(a) - UR((t) - напряжение на измерительном резисторе от времени: выделенные участки: Ф1 - (АФ1, способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 Ф1) - интегрирование переднего фронта импульса; Ф2 - (АФ2, способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 Ф2) - отсечки буферного слоя или формирования нелинейного конденсатора (варикапа); Ф3 - (АФ3, способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 Ф3) - формирование инверсного слоя; Ф4 - (А Ф4, способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 Ф4) - участок формирования резистивных утечек подзатворного диэлектрика; участки С1 - (AC1, способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 С1) или Ф5, С2 - (АС2, способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 С2) или Ф6 - фазы релаксации тестового конденсатора МДП от заднего фронта зондирующего импульса;

(б) - UP(t) - напряжение генератора прямоугольных импульсов от времени: зондирующий прямоугольный импульс генератора при дифференциальной схеме включения тестовой структуры.

На Фиг.7 показана зависимость изменения величины падения напряжения UR(t) на измерительном резисторе RH на участке Ф4 структуры МДП при возбуждении прямоугольным импульсом напряжения амплитудой Up=6 B с длительностью способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 p=10 мс до («Без облучения») и в процессе ионизации («Экспозиция ИИ»).

На Фиг.8 показаны эпюры изменения во времени и от TID величин: 1) мощности дозы импульсного рентгеновского излучения PX-Ray(t) во времени; 2) TID источника рентгеновского излучения во времени; 3) мощности дозы нуклидного источника PCo-60(t) во времени; 4) TID нуклидного источника Co60 во времени; 5) сдвига порогового напряжения способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 VTH в структуре n-МДП от TID в SiO2 ; 6) сдвига порогового напряжения способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 VTH в структуре p-МДП от TID в SiO2 ; 7) циклическое изменение во времени импульсов тестового генератора прямоугольных импульсов в облучательном эксперименте с нуклидным источником Со60; 8) RDEF для структур n-МДП от TID в SiO2 и 9) RDEF для структур p-МДП от TID в SiO 2.

Предлагаемый способ реализуется следующим образом.

Известно, что дрейф порогового напряжения способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 VTH определяется соотношением величин радиационно-индуцированных зарядов в подзатворном диэлектрике Qot и на границе раздела, или интерфейсе «полупроводник - диэлектрик» структуры КНД Qit /13/ (Фиг.1-Фиг.3), а толщина слоя подзатворного диэлектрика влияет на результаты измерения способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 VTH в зависимости от СЭР источника (Фиг.4).

В способе определения коэффициента относительной эффективности и эквивалентной дозы источника рентгеновского излучения в состав каждой БИС вводят встроенные дозиметры сопровождения в виде независимых тестовых n- и p-канальных транзисторных структур МДП, включенных в режиме конденсатора.

Затем производят независимое облучение таких структур в составе ограниченной выборки разных БИС импульсным излучением рентгеновского источника или излучением гамма-квантов нуклидного источника Со60 .

Выполняют измерения до и в процессе облучения с использованием способа кулонометрического измерения электрофизических параметров структур МДП путем подачи на затвор этих структур импульса напряжения прямоугольной формы положительной полярности длительностью способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 P и величиной UP и контроля падения напряжения на измерительном резисторе RH, включенном последовательно между телом структур МДП, сформированным по единой базовой технологии, что и для основной БИС (Фиг.5).

Амплитуду импульса генератора в способе кулонометрического измерения ЭФП на Фиг.5 выбирают из условий формирования на зависимости падения напряжения UR на измерительном резисторе во времени пяти характерных участков с амплитудой Ai и временем завершения формирования способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 i, включающих участок Ф1 интегрирования переднего фронта импульса, участок Ф2 отсечки буферного слоя или формирования нелинейного конденсатора (варикапа), участок Ф3 формирования инверсного слоя, участок Ф4 формирования резистивных утечек подзатворного диэлектрика, участок С1 фазы релаксации структуры МДП от заднего фронта зондирующего импульса, формируемый выходными характеристиками генератора импульсов, участок С2, формируемый величиной сопротивления измерительного резистора RH (Фиг.6), измеряют при фиксированной амплитуде напряжения UP зондирующего импульса величину падения напряжения UR на измерительном резисторе RH.

С целью повышения достоверности результата измерений с использованием способа кулонометрического измерения приращения падения напряжения на измерительном резисторе RH до и в процессе облучения проводят на участке Ф4 формирования резистивных утечек подзатворного диэлектрика (Фиг.6).

Производят сравнение результатов измерения падения напряжения и его приращения при воздействии ионизирующих излучений различной природы (Фиг.7).

При этом коэффициент относительной эффективности RDEF результата воздействия на БИС технологии КМОП/КНД излучения импульсного рентгеновского источника по сравнению с гамма-излучением эталонного нуклидного источника Со60 получают путем измерения падения напряжения на резисторе нагрузки RH и его приращения в результате воздействия ИИ с использованием соотношения (3).

Эквивалентную дозу способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 импульсного рентгеновского излучения определяют в единицах, эквивалентных спектру нуклидного источника, с использованием значения RDEF, полученного для конкретной величины поглощенной дозы нуклидного источника Со60, из соотношения (7).

Для исключения эффекта «супервосстановления» порогового напряжения транзисторов n-МДП и p-МДП мощность дозы источника импульсного рентгеновского излучения и источника гамма-квантов Со60 выбирают из условия способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 .

Для получения результатов измерений в реальном масштабе времени подачу импульса напряжения прямоугольной формы положительной полярности длительностью способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 P и величиной UP и контроль падения напряжения на измерительном резисторе RH синхронизируют по времени по переднему фронту или заднему фронту рентгеновского импульса.

При облучении гамма-квантами источника Со60 динамику накопления дозы и изменения величины RDEF осуществляют путем подачи импульса напряжения UP на тестовые структуры встроенных дозиметров с периодичностью, определяемой соотношением между предельной возможной частотой генерации электрического импульса напряжения UP и временем экспозиции тестовых структур МДП нуклидного источника Со60 для набора требуемого верхнего допустимого уровня полной поглощенной дозы ИИ (Фиг.8-7)).

С целью создания условий равенства радиационно-индуцированных зарядов в структурах МДП, т.е. условия RDEF=1, время воздействия излучения способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 нуклидного источника Со60 выбирают в соответствии с соотношением (8).

Пример реализации способа

С использованием импульсного способа кулонометрического измерения ЭФП измерялись для встроенного в чип основной БИС n-МДП дозиметра длиной LC=100 мкм, шириной WC =100 мкм следующие значения падения напряжения на измерительном резисторе RH в режимах: отсутствия воздействия ИИ, UD; при воздействии импульса рентгеновского излучения, способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 ; при воздействии гамма-излучения нуклидного источника Со60, способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 и их изменения: способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 из (4); способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 из (5); способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 UD из (6) при амплитуде импульса генератора прямоугольных импульсов UP=6 B и длительности электрического импульса способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 =10 мс, что позволяет определить ток в RH и величину заряда способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 Выборка чипов с тестовыми структурами составляла 10 ед. Результаты измерения этих изменений в отсутствие облучения и для условий облучения на источнике импульсного X-Ray и нуклидном источнике Со60 приведены в табл.1 для структуры n-МДП. Величина экспозиционной мощности дозы способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 составляла ~1010 Р·с-1 и длительность импульса ИИ способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 для рентгеновского источника и способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 для нуклидного источника Со60.

Таблица 1
Условия измерения Величина способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 в зависимости от условий измерения, мВ
способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 UD способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861
До облучения7 "+"/6,9"-" способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861
Облучение на источнике Х-Ray способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 43,08 "+"/43,04"-"
Облучение на источнике Со60способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 40,06 "+"/40,0"-" способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861
Примечание: - Значки «+» и «-» в табл.1 означают соответствие верхней допустимой и нижней допустимой границ, измеренных в выборке величин.

Результаты расчетов компонентов соотношения (3) приведены в табл.2 и в табл.3. Оценка верхней («+») и нижней («-») границ изменения RDEF с учетом этих данных составила RDEF=12,8 "+"/16,22"-" для условий проведения эксперимента.

С использованием соотношения (ПА.19) Приложения «А» вычисляют для структуры n-МДП эквивалентную мощность дозы способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 импульсного рентгеновского излучения в единицах, эквивалентных спектру нуклидного источника. При облучении на источнике X-Ray величина эквивалентной мощности дозы способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 , соответствующая облучению на нуклидном источнике Co 60 с длительностью экспозиции способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 равна:

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

что превышает технические возможности имевшегося импульсного источника рентгеновского излучения способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 . Расчет времени воздействия излучения способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 нуклидного источника Со60 в условиях равенства радиационно-индуцированных зарядов в структурах МДП, выполненный с использованием соотношения (8), дает значения:

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 ,

что затрудняет точность реализации условий эксперимента на нуклидном источнике Со60. Исходя из анализа соотношения (8) для приемлемых условий управления источником способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 достаточная величина TID в единицах способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 должна составлять значение

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 .

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

Таким образом, реализуются сформулированные цели и иллюстрируется возможность реализации заявленного способа.

Преимущества заявленного способа по сравнению с прототипом состоят в следующем:

В заявленном способе, во-первых, все измерения проводятся в течение времени одного тестирующего импульса напряжения длительностью не более 10 мс; во-вторых, реализуется синхронизация процесса формирования режима инверсии в структурах МДП на фоне воздействия ИИ; в-третьих, учитываются СЭР источников рентгеновского и гамма-излучений путем оценки мощности дозы источника рентгеновского излучения в единицах эквивалентной энергии источника Со60; в-четвертых, процесс вычисления количественных значений RDEF проводится с использованием прикладного программного обеспечения; в-пятых, условия радиационного эксперимента корректируются путем вариации амплитудных и временных характеристик ИИ для достижения условий эквивалентности радиационного эффекта при воздействии ИИ рентгеновского источника и эталонного Со 60; в-шестых, прямые экспериментальные данные, полученные при реализации предлагаемого способа, позволяют утверждать о его практических возможностях.

Таким образом, использование предлагаемого способа позволяет достаточно просто и точно в режиме реального масштаба времени определить динамику изменения RDEF и получить оценку мощности дозы способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 или способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 источника рентгеновского излучения в единицах эквивалентной энергии источника Со60, что дает возможность планирования радиационного эксперимента со структурами КМОП/КНД.

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

ПРИЛОЖЕНИЕ «А»: ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ОТНОСИТЕЛЬНОЙ ЭФФЕКТИВНОСТИ И ЭКВИВАЛЕНТНОЙ ДОЗЫ ИСТОЧНИКА РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ

Обозначения:

D - Dark «темновой», т.е. без облучения ИИ;

X-Ray - экспозиция рентгеновскими квантами;

Со-60 - экспозиция квантами нуклидного источника Со60;

REFF - Factor Relatively Efficiency (коэффициент относительной эффективности - КОЭ);

Ph - Photocurrent - фототок;

UPh - падение напряжения на измерительном резисторе RH на участке Ф4 при облучении структур МДП импульсным рентгеновским излучением источника X-Ray или квазиимпульсным излучением источника Со60;

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 - падение напряжения на измерительном резисторе R H на участке Ф4 при облучении структур МДП импульсным рентгеновским излучением источника X-Ray;

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 - падение напряжения на измерительном резисторе R H на участке Ф4 при облучении структур МДП квазиимпульсным излучением нуклидного источника Со60;

UD - падение напряжения на измерительном резисторе RH на участке Ф4 в отсутствии облучения источниками ИИ («темновое» напряжение);

H - нагрузка;

Ф3 - фаза формирования инверсного слоя (Фиг.6);

Ф4 - фаза формирования резистивных утечек подзатворного диэлектрика (Фиг.6).

Сопротивление поперечной утечки в подзатворном оксиде

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

«Темновое» напряжение U D (ток ID).

Напряжение при фотоионизации UPh (ток фотоионизации IPh).

IPh>ID; Uph>UD на участке Ф4 формирования тока резистивной утечки подзатворного оксида.

Длительность процесса способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 =(способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 ф3-способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 ф4) при импульсном кулонометрическом измерении на участке Ф4 (Фиг.6).

Напряжение импульса возбуждения UP=const.

Сопротивление утечки в режиме без воздействия ИИ

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

Сопротивление утечки при экспозиции ИИ

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

Заряд в пределах развития фазы Ф4 (Фиг.6)

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

«Темновой» ток

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

Фототок утечки при экспозиции ИИ

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

Приращение заряда при экспозиции ИИ из (ПА.6) и (ПА.5)

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

С другой стороны радиационно-индуцированный заряд гамма-излучением источника Со60 равен

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

где q - элементарный заряд, [Кл]; способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 - постоянная генерации носителей заряда обоего знака (ehp-электронно-дырочные пары) под действием ИИ, [[eph·рад-1(SiO2 )]; способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 - мощность дозы ИИ источника Со60, [рад(SiO 2)·c-1] способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 - длительность импульса ИИ источника Со60, [с] Приравнивая (ПА.7) и (ПА.8) с подстановкой (ПА.5) и (ПА.6) в (ПА.7), получают

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

Постоянная генерации носителей заряда при экспозиции квантами источника Со60 из (ПА.9)

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

Радиационно-индуцированный заряд рентгеновскими квантами источника импульсного рентгеновского излучения (X-Ray) равен аналогично (ПА.9)

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

Аналогично (ПА.11) постоянная генерации носителей заряда при экспозиции квантами источника рентгеновского излучения

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

Мощность дозы источника рентгеновского излучения в единицах, эквивалентных спектру нуклидного источника Со60 (средняя энергия квантов способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 ), с учетом допущения об эквивалентности зарядов способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861 при облучении структуры МДП ИИ соответствующих источников, равна

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

откуда с учетом (ПА.11) и (ПА.12)

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

Обозначим:

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

Тогда мощность эквивалентной дозы источника рентгеновского излучения равна

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

а величина коэффициента относительной эффективности RDEF равна

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

Так как произведение мощности дозы на длительность импульса ИИ при его аппроксимации прямоугольным импульсом равно TID,

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

можно представить в виде

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

При достижении равенства радиационно-индуцированных зарядов в условиях облучения на рентгеновском и нуклидном источниках (Фиг.8) (ПА.19) можно представить в виде

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

откуда определяют время достижения эквивалентности радиационно-индуцированных зарядов

способ определения коэффициента относительной эффективности и   эквивалентной дозы источника рентгеновского излучения, патент № 2480861

Класс H01L21/66 испытания или измерения в процессе изготовления или обработки

способ определения мольной доли li2o в монокристаллах linbo3 -  патент 2529668 (27.09.2014)
устройство для сортировки на группы по электрическим параметрам плоских хрупких изделий -  патент 2528117 (10.09.2014)
способ контроля качества алмазных пластин, предназначенных для изготовления детекторов ионизирующих излучений -  патент 2525636 (20.08.2014)
способ обнаружения скрытых дефектов матричных бис считывания -  патент 2523752 (20.07.2014)
термокамера для испытания электронных изделий -  патент 2523098 (20.07.2014)
способ контроля качества светодиодной структуры -  патент 2521119 (27.06.2014)
способ определения электропроводности и толщины полупроводниковых пластин или нанометровых полупроводниковых слоев в структурах "полупроводниковый слой - полупроводниковая подложка" -  патент 2517200 (27.05.2014)
способ контроля дефектности эпитаксиальных слоев кремния на диэлектрических подложках -  патент 2515415 (10.05.2014)
способ увеличения выхода годных при изготовлении высокоплотных электронных модулей -  патент 2511007 (10.04.2014)
способ определения стойкости электронных компонентов и блоков радиоэлектронной аппаратуры к воздействию ионизирующих излучений -  патент 2504862 (20.01.2014)
Наверх