способ получения оксида урана

Классы МПК:C01G43/01 оксиды; гидроксиды
Автор(ы):, , , ,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") (RU)
Приоритеты:
подача заявки:
2011-11-14
публикация патента:

Изобретение относится к области неорганической химии, в частности к металлургии урана и производству его соединений, и может быть использовано в химической и ядерной технологиях. Способ получения оксида урана включает нагрев диоксида урана до температуры 500÷900°С в среде кислородсодержащего агента в реакционной емкости, образующей замкнутое пространство с внутренним объемом, составляющим 2÷4 объема загружаемого урансодержащего продукта, и имеющей отверстия, суммарная площадь которых составляет от 5 до 25% от площади поверхности реакционной емкости, с последующим исключением внешнего источника тепла. Причем перед нагревом диоксида урана в реакционной емкости к диоксиду урана добавляют металлический уран в количестве 20÷40% мас. от массы диоксида урана. Изобретение обеспечивает упрощение и снижение энергоемкости процесса получения оксида урана. 1 табл., 1 пр.

Формула изобретения

Способ получения оксида урана, включающий нагрев урансодержащего продукта - диоксида урана до температуры 500÷900°С в среде кислородсодержащего агента в реакционной емкости, образующей замкнутое пространство с внутренним объемом, составляющим 2÷4 объема загружаемого урансодержащего продукта, и имеющей отверстия, суммарная площадь которых составляет от 5 до 25% от площади поверхности реакционной емкости, с последующим исключением внешнего источника тепла, отличающийся тем, что перед нагревом диоксида урана в реакционной емкости до 500÷900°С к диоксиду урана добавляют металлический уран в количестве 20÷40 мас.% от массы диоксида урана.

Описание изобретения к патенту

Изобретение относится к области неорганической химии, в частности к металлургии урана и производству его соединений, и может быть использовано в химической и ядерной технологиях.

Известен способ получения оксида урана, заключающийся в нагреве металлического урана в реакционной емкости внешним источником тепла до температуры 500-900°С в кислородсодержащей среде с последующей выдержкой при указанной температуре до прекращения процесса образования оксида урана (см. Я.М.Стерлин. Металлургия урана. - М.: Государственное издательство литературы в области атомной науки и техники, 1962, с.64-69).

Недостатками этого способа получения оксида урана являются значительные энергозатраты на поддержание заданного температурного режима, а также невысокая производительность.

Известен способ получения оксида урана, заключающийся в нагреве металлического урана в реакционной емкости в среде кислородсодержащего агента внешним источником тепла до температуры 500-900°С и последующей выдержке до прекращения процесса, причем в качестве реакционной емкости используют емкость, образующую замкнутое пространство с внутренним объемом, составляющим 2-4 объема загруженного металлического урана, и имеющую отверстия, суммарная площадь которых составляет от 5 до 25% от площади поверхности реакционной емкости, а после нагрева до температуры 500-900°С внешний источник отключают (см. патент RU 2247076, МПК C01G 43/01, 22.07.2003).

Недостатком известного способа получения оксида урана является значительное отклонение содержания кислорода в получаемом оксиде урана от стехиометрического содержания кислорода в оксиде урана (закиси-окиси урана) при использовании в качестве исходного продукта диоксида урана.

Наиболее близким к заявленному способу получения оксида урана по технической сущности и достигаемому результату - прототипом - является способ получения оксида урана, заключающийся в нагреве урансодержащего продукта до 500-900°С в среде кислородсодержащего агента в реакционной емкости, образующей замкнутое пространство с внутренним объемом, составляющим 2-4 объема загружаемого урансодержащего продукта, и имеющей отверстия, суммарная площадь которых составляет от 5 до 25% от площади поверхности реакционной емкости, причем при получении в качестве оксида урана закиси-окиси урана из диоксида урана в качестве урансодержащего продукта используют диоксид урана, подвергнутый предварительному измельчению до крупности менее 2 мм, процесс осуществляют в две стадии: на первой стадии в емкости, образующей замкнутое пространство с отверстиями, а на второй стадии урансодержащий продукт перегружают в реакционную емкость с открытой поверхностью, составляющей 30-40% от общей поверхности реакционной емкости, и осуществляют нагрев до 500-600°С с последующей выдержкой до прекращения процесса (см. патент RU 2299857, МПК C01G 43/01, 15.11.2005).

Недостатком известного способа получения оксида урана являются сложность и энергоемкость процесса.

Эти недостатки связаны с тем, что процесс осуществляют в две стадии: на первой стадии - в емкости, образующей замкнутое пространство с отверстиями, а на второй стадии - в емкости с открытой поверхностью. Причем нагрев до 500-900°С на первой стадии и последующий нагрев до 500-600°С с выдержкой при этой температуре на второй стадии осуществляют внешним источником тепла.

Перед авторами стояла задача упрощения и снижения энергоемкости способа получения оксида урана.

Поставленная задача решается тем, что в способе получения оксида урана, включающем нагрев урансодержащего продукта - диоксида урана до температуры 500-900°С в среде кислородсодержащего агента в реакционной емкости, образующей замкнутое пространство с внутренним объемом, составляющим 2-4 объема загружаемого урансодержащего продукта, и имеющей отверстия, суммарная площадь которых составляет от 5 до 25% от площади поверхности реакционной емкости с последующим исключением внешнего источника тепла, перед нагревом диоксида урана в реакционной емкости до 500-900°С в объеме диоксида урана размещают произвольным образом металлический уран в количестве 20-40% масс. от массы диоксида урана.

Причинно-следственная связь между существенными признаками и достигаемым техническим результатом заключается в следующем.

Предложенный способ получения оксида урана (U3O8) реализуется в условиях, обеспечивающих саморазогрев и тепловой баланс процесса за счет экзотермической реакции взаимодействия урана с кислородом

3U+4O2способ получения оксида урана, патент № 2481272 U3O8+260 ккал/(г·атом урана)

после предварительного нагрева до температуры 500÷900°С.

Однако окисление диоксида урана (UO2) до закиси-окиси урана (U3O8) после нагрева до 500-900°С проходит в одну стадию по реакции

UO2способ получения оксида урана, патент № 2481272 U3O8+Q,

а окисление металлического урана происходит ступенчато, с предварительным образованием промежуточных оксидов по реакции

Uспособ получения оксида урана, патент № 2481272 UOспособ получения оксида урана, патент № 2481272 UO2способ получения оксида урана, патент № 2481272 U3O8+Q.

Таким образом, в заявленном способе предварительно образуется закись-окись урана из диоксида урана, а реакция взаимодействия металлического урана с кислородом продолжается, при этом выделяющееся тепло способствует гомогенизации продукта окисления с получением содержания кислорода в закиси-окиси урана, близкого к стехиометрическому содержанию.

Т.е. в заявленном способе получения оксида урана совмещаются два процесса, а именно, получение непосредственно закиси-окиси урана и ее гомогенизации по кислородному коэффициенту, что упрощает способ и снижает его энергоемкость.

Количество вводимого металлического урана в диоксид урана 20-40% масс. определяется тем, что при меньшем содержании урана (<20% масс.) из-за недостатка выделившегося тепла при сгорании металлического урана не обеспечивается гомогенизация получаемого продукта - закиси-окиси урана по кислородному коэффициенту. Кислородный коэффициент находится в пределах 2,50-2,70, однако разброс в таких пределах не допускается по техническим условиям на продукт.

В случае введения металлического урана в двуокись урана более 40% масс. происходит избыточное тепловыделение при сгорании металлического урана, что приводит к спеканию получаемого продукта с образованием агломерата, требующего дополнительного измельчения и, следовательно, приводит к усложнению процесса.

Предложенный способ получения оксида урана - закиси-окиси урана иллюстрируется следующим примером.

Пример

Двуокись урана в виде компактного материала или крупки <2 мм загружали в реакционную емкость из нержавеющей стали, выполненную в виде прямоугольного контейнера с крышкой и отверстиями для доступа кислородсодержащего агента. Размеры реакционной емкости изменялись таким образом, что соотношение ее внутреннего объема и загружаемого урансодержащего продукта составляло от 2 до 4, а площадь отверстий составляла от 5 до 25% от общей площади поверхности реакционной емкости, к диоксиду урана добавляли металлический уран в количестве 20-40% масс. от массы диоксида урана.

Реакционную емкость с урансодержащим продуктом помещали в муфельную печь и нагревали до 500÷900°С. При достижении заданной температуры 500÷900°С внешний источник нагрева (муфельная печь) отключали, и далее процесс окисления протекал в режиме самонагрева до прекращения процесса.

В таблице приведены примеры осуществления предложенного способа получения оксида урана на граничные и промежуточные значения параметров в сопоставлении с известным способом.

Как следует из приведенных в таблице данных, предложенный способ получения оксида урана (примеры 1-3) обеспечивает в сравнении с известным способом (примеры 4-5) его упрощение и снижение энергоемкости.

Таблица
Параметры Примеры
12 34 известный 5 известный
Температура нагрева внешним источником, °С 500700 900500 900
Масса загрузки диоксида урана, кг 0,3650,704 0,680 0,51,0
Масса загрузки металлического урана, кг 0,0730,211 0,272 --
Соотношение масс металла и диоксида, % 2030 40- -
Объем загруженного урансодержащего продукта, см3 100 200200 150300
Объем реакционной емкости, см3 200300 400300 1200
Соотношение объемов реакционной емкости и загруженного продукта 2 1,52 24
Соотношение площади отверстий и поверхности реакционной емкости, %5 1525 525
Параметры 2-й стадии окисления Температура нагрева, °С -- -500 600
Соотношение площади поверхности и общей поверхности реакционной емкости, %- -- 3040
Энергоемкость процесса, кВт/час 2,02,6 3,24,8 6,1
Количество стадий окисления 11 12 2
Качество продукта U3O8 Кислородный коэффициент 2,652,63 2,642,65 2,64
Отклонение от стехиометрии, % -0,75-1,50 -1,12 -0,75-1,12

Класс C01G43/01 оксиды; гидроксиды

системы выделения фтора и способы выделения фтора -  патент 2508246 (27.02.2014)
способ переработки гексафторида урана -  патент 2489357 (10.08.2013)
способ получения окислов урана из тетрафторида урана -  патент 2414428 (20.03.2011)
способ получения окислов урана и тетрафторида кремния из тетрафторида обедненного урана -  патент 2412908 (27.02.2011)
способ получения оксида урана с требуемым содержанием изотопа 235u -  патент 2408538 (10.01.2011)
способ получения оксидов урана -  патент 2404925 (27.11.2010)
способ переработки урансодержащей композиции -  патент 2396211 (10.08.2010)
способ получения оксида урана при переработке урановых твэлов -  патент 2363998 (10.08.2009)
способ переработки урансодержащей композиции -  патент 2343119 (10.01.2009)
способ переработки концентратов оксидов природного урана -  патент 2323883 (10.05.2008)
Наверх