способ получения растворов метилатов рения
Классы МПК: | C25B3/00 Электролитические способы получения органических соединений |
Автор(ы): | Чернышова Оксана Витальевна (RU), Прямилова Екатерина Николаевна (RU), Дробот Дмитрий Васильевич (RU), Чернышов Валерий Иванович (RU) |
Патентообладатель(и): | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет тонких химических технологий имени М.В. Ломоносова" (МИТХТ) (RU) |
Приоритеты: |
подача заявки:
2011-12-16 публикация патента:
10.05.2013 |
Предложенное изобретение относится к способу получения растворов метилатов рения электрохимическим методом. Электрохимическое растворение рения в предложенном способе проводят при анодной поляризации и при постоянных параметрах потенциала тока в безводном метиловом спирте, содержащем в качестве электропроводной добавки хлорид лития LiCl, содержание которого определяется исходя из количества, необходимого для обеспечения достаточной проводимости электролита. В качестве катода используют инертный электрод, а фиксированное значение потенциала анода составляет Е 3,50±0,001, что обеспечивает получение продукта определенного состава, отвечающего формуле Re4O6-y(ОСН 3)12+y, где 0 y 4. Снижение температуры процесса растворения рения, повышение выхода продукта и его чистоты является техническим результатом предложенного изобретения. 2 ил., 3 пр.
Формула изобретения
Способ получения оксометилатов рения электрохимическим методом, заключающийся в анодном растворении рения в обезвоженном метиловом спирте в присутствии электропроводящей добавки, отличающийся тем, что растворение рения ведут при фиксированном значении потенциала анода Е 3,50±0,001, с получением продукта определенного состава, отвечающего формуле Re4O6-y(ОСН3 )12+y, где 0 y 4.
Описание изобретения к патенту
Изобретение относится к области химии и технологии рения, в частности электрохимическому способу получения метилатов рения, которые могут использоваться как предшественники для получения сплавов рения с другими тугоплавкими металлами, ультрадисперсных (>100 нм) и наноразмерных (<100 нм) порошков функциональных материалов на основе рения (металлического рения, оксидов рения (IV) и (VI)), нашедшие свое применение в реакциях кросс-конденсации и восстановительной дегидратации спиртов с целью получения моторных топлив и/или присадок к ним.
Алкоксотехнология является перспективной при получении при низких температурах (<500÷900°С) материалов (индивидуальные оксиды, их твердые растворы, сложные оксиды, металлы, сплавы), обладающих повышенной фазовой и химической однородностью и регулируемым гранулометрическим составом, а также ультрадисперсных и наноразмерных материалов.
Известен способ [Druce J.G.F. Ethoxides and isopropoxides of manganese and rhenium // J. of the Chemical Society. 1937. P.1407-1408] получения этилата рения Re(OEt) 3 путем взаимодействия Re3Cl9 1,46 г в эфире со спиртовым раствором NaOEt (0,34 г Na; 30 с.с. EtOH). При выпаривании этоксид рения оставался в остатке.
Существенные недостатки способа заключаются в трудоемкости, необходимости использования сложного оборудования, сложности автоматизации процесса, получение исходных соединений представляет собой самостоятельную задачу синтеза.
Известен способ [Ковсман Е.П. и др. Способ получения алкоксидов титана, опубликовано / Патент РФ № 2079503] получения алкоксидов титана (тетрабутоксида титана (ТБТ) и тетраизопропоксида) путем электрохимического растворения анода из титана в электролите, содержащем алканол (бутанол или изопропанол) и хлорид лития, при плотности тока 2-6 А/дм 2 с циркуляцией электролита, возвратом хлорида лития и алканола в процесс и выделением целевого продукта, отличающийся тем, что используют цельнометаллический анод из титана и процесс ведут при скорости протока электролита в межэлектродном зазоре не ниже 5 см/с. Недостатком является протекание вторичных химических реакций с продуктами электрохимического окисления.
Наиболее близким техническим решением является способ [Щеглов П.А. Моно-, би- и триметаллические оксоалкоксопроизводные рения (синтез, свойства и применение). Диссер. на соиск. ученой степени кандидата хим. наук. - М.: МИТХТ им. М.В.Ломоносова, 2002, 139 с.] синтеза Re4O2(OMe)16 и Re 4O6(ОМе)12 электрохимическим методом. Анодное растворение рения в среде МеОН (Me - метильная группа) осуществляли в присутствии фонового электролита LiCl (0,025 моль/л) как без разделения катодного и анодного пространств, так и с их разделением посредством мембраны из пористого стекла. Процесс вели при 18÷20°С. Выход по току составил 62 и 79%.
Основным недостатком данного метода является нестабильность получения продуктов синтеза.
Технический результат предлагаемого изобретения состоит в понижении температуры процесса, повышении выхода продукта, получении продукта, не загрязненного хлором, поскольку содержание электропроводящей добавки существенно снижено, технологической гибкости процесса и относительно низких затратах.
Технический результат достигается электрохимическим методом, заключающимся в анодном растворении рения в обезвоженном метиловом спирте в присутствии электропроводящей добавки, отличающимся тем, что растворение рения ведут при фиксированном значении потенциала анода Е 3,50±0,01, что обеспечивает получение продукта определенного состава, отвечающего общей формуле Re4O6-у (ОСН3)12+у, где 0 у 4.
Сущность предложенного способа заключается в следующем. В электрохимическую ячейку помещают электролит, представляющий собой обезвоженный метиловый спирт с растворенной в нем и предварительно осушенной электропроводящей добавкой (LiCl). Концентрация LiCl определяется исходя из количества, необходимого для обеспечения достаточной проводимости, обычно 0,03-0,08 моль/л. В качестве катода используют инертный электрод, в качестве анода - металлический рений. Растворение рения ведут при фиксированном значении потенциала анода, определяющего протекание интересующей анодной реакции, что позволяет получать продукт определенного состава Re4O6-у(ОСН3)12+у , где 0 y 4 (Фиг.2). Потенциал анода определяют с помощью поляризационных и деполяризационных кривых, полученных с использованием электрохимического исследовательско-технологического комплекса (ЭХК-1012, ООО ИП "Тетран"), использующего некомпенсационный способ измерения потенциала [патент РФ № 2106620 от 26.04.96].
Установлено, что в литературе не описано влияние потенциала электрода на получение оксометилатов рения определенного состава.
Пример 1. Анодное растворение металлического рения в метиловом спирте с добавкой LiCl 0,05-0,06 моль/л проводили в двухкамерной проточной ячейке из фторопласта (Фиг.1), суммарным объемом 100 мл. Камеры ячейки разделены катионообменной мембраной МК-40. Поток электролита с заданной скоростью в установке обеспечивается перистальтическим насосом.
С помощью поляризационных и деполяризационных кривых, полученных с использованием ЭХК-1012, выбрали технологические параметры: потенциал растворения рения Е=2,91 В, точность поддержания потенциала Е=±0,01 В, температура - 20-25°С, скорость потока - 0,4 л/ч. Выбранные параметры обеспечивают протекание единственной реакции на аноде при максимально возможной скорости и производительности процесса, ограничиваемой техническими характеристиками ЭХК-1012.
По окончании эксперимента были проведены анализы проб растворов электролита методами ИК-спектроскопии, ЭПР-спектроскопии; фотометрическим методом определена концентрация рения в анолите и католите.
Продуктами электрохимического синтеза в метиловом спирте в присутствии электропроводящей добавки при потенциале Е=2,91±0,01 В является комплекс рения (VI) Re 4O6(ОСН3)12, где на один атом рения приходится один концевой оксолиганд (связь Re=O).
Пример 2. Анодное растворение металлического рения в метаноле с добавкой LiCl 0,05-0,06 моль/л проводили в двухкамерной проточной ячейке из фторопласта (Фиг.1).
При технологических параметрах: потенциал растворения рения Е 2,91±0,01 В, температура - 20-25°С, скорость потока - 0,4 л/ч продуктом электрохимического синтеза в метиловом спирте является комплекс рения (VI) Re4O6 (ОСН3)12 аналогично примеру 1.
Пример 3. Анодное растворение металлического рения в метаноле с добавкой LiCl 0,05-0,06 моль/л проводили в двухкамерной проточной ячейке из фторопласта (Фиг.1) при технологических параметрах: потенциал растворения рения Е=3,50 В, точность поддержания потенциала Е=±0,01 В, температура - 20-25°С, скорость потока - 0,4 л/ч продуктом электрохимического синтеза в метиловом спирте является комплекс Re4O2(ОСН3 )16 (V), в котором отсутствуют концевые оксолиганды.
Таким образом, из описания примеров и результатов следует, что предлагаемая методика позволяет реализовывать управляемый электрохимический синтез метилатов рения. Установка фиксированных электрохимических параметров делает возможным получение воспроизводимых результатов анодного растворения.
Пояснения к фигурам.
Фиг.1 - Электрохимическая ячейка для синтеза алкоксопроизводных:
1 - корпус ячейки;
2 - токоподвод к титановому катоду;
3 - токоподвод к аноду (Re);
4 - мембрана МК-40;
5 - штуцер.
Фиг.2 - Структура Re 4O6(OCH3)12.
Класс C25B3/00 Электролитические способы получения органических соединений